Question Number 216820 by Ismoiljon_008 last updated on 22/Feb/25 | ||
![]() | ||
$$ \\ $$$$\:\:\:{f}\left({x}\right)\:=\:{ax}^{\mathrm{4}} \:+\:{bx}^{\mathrm{3}} \:+\:{cx}^{\mathrm{2}} \:+\:{dx}\:+\:{e} \\ $$$$\:\:\:{f}\left(\mathrm{1}\right)\:=\:\mathrm{2} \\ $$$$\:\:\:{f}\left(\mathrm{2}\right)\:=\:\mathrm{3} \\ $$$$\:\:\:{f}\left(\mathrm{3}\right)\:=\:\mathrm{4} \\ $$$$\:\:\:{f}\left(\mathrm{4}\right)\:=\:\mathrm{5}\: \\ $$$$\:\:\:{f}\left(\mathrm{0}\right)\:=\:\mathrm{25} \\ $$$$\:\:\:\mathcal{T}{hen}\:\:{f}\left(\mathrm{5}\right)\:=\:? \\ $$$$\:\:\:\mathcal{H}{elp}\:{me},\:\:{please} \\ $$$$ \\ $$ | ||
Answered by BaliramKumar last updated on 22/Feb/25 | ||
![]() | ||
Commented by Ismoiljon_008 last updated on 22/Feb/25 | ||
![]() | ||
$$\:\:\:{thank}\:{you}\:{very}\:{much} \\ $$ | ||
Commented by ArshadS last updated on 22/Feb/25 | ||
![]() | ||
$$\mathrm{Some}\:\mathrm{explanation}\:\mathrm{please}! \\ $$ | ||
Answered by mr W last updated on 22/Feb/25 | ||
![]() | ||
$${f}\left(\mathrm{1}\right)=\mathrm{2}=\mathrm{1}+\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{3}=\mathrm{2}+\mathrm{1} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{4}=\mathrm{3}+\mathrm{1} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{5}=\mathrm{4}+\mathrm{1} \\ $$$${we}\:{can}\:{see} \\ $$$${f}\left({x}\right)={x}+\mathrm{1}+{g}\left({x}\right)\:{with}\: \\ $$$${g}\left({x}\right)\:=\:{polynomial}\:{of}\:\mathrm{4}^{{th}} \:{degree}\:{and} \\ $$$${g}\left(\mathrm{1}\right)={g}\left(\mathrm{2}\right)={g}\left(\mathrm{3}\right)={g}\left(\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow{g}\left({x}\right)={A}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right) \\ $$$${f}\left({x}\right)={x}+\mathrm{1}+{A}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right) \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}+{A}\left(−\mathrm{1}\right)\left(−\mathrm{2}\right)\left(−\mathrm{3}\right)\left(−\mathrm{3}\right)=\mathrm{1}+\mathrm{24}{A}=\mathrm{25}\: \\ $$$$\Rightarrow{A}=\mathrm{1} \\ $$$$\Rightarrow{f}\left({x}\right)={x}+\mathrm{1}+\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right) \\ $$$${f}\left(\mathrm{5}\right)=\mathrm{5}+\mathrm{1}+\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}=\mathrm{30}\:\checkmark \\ $$ | ||
Commented by ArshadS last updated on 23/Feb/25 | ||
![]() | ||
$${thanks}\:{sir}! \\ $$$${f}\left(\mathrm{1}\right),{f}\left(\mathrm{2}\right),{f}\left(\mathrm{3}\right),{f}\left(\mathrm{4}\right)\:{all}\:{agree}\:{the}\:{pattern}:\:{f}\left({x}\right)={x}+\mathrm{1} \\ $$$${but}\:{f}\left(\mathrm{0}\right)=\mathrm{24}\:{disagrees}.\:{Then}\:{why}\:{in}\:{general}\:{the} \\ $$$${pattern}\:{f}\left({x}\right)={x}+\mathrm{1}\:{is}\:{made}? \\ $$ | ||
Commented by mr W last updated on 23/Feb/25 | ||
![]() | ||
$${we}\:{can}\:{not}\:{say}\:{f}\left({x}\right)={x}+\mathrm{1}.\:{but}\:{we} \\ $$$${can}\:{say} \\ $$$${f}\left({x}\right)={x}+\mathrm{1}+{A}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right) \\ $$ | ||
Commented by ArshadS last updated on 23/Feb/25 | ||
![]() | ||
$$\mathcal{T}{hanks}\:{to}\:{teach}\:{me}\:{sir}! \\ $$ | ||