Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 860 by 123456 last updated on 28/Mar/15

f(x^2 )=[f(x)]^2   f(1)=1

$${f}\left({x}^{\mathrm{2}} \right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$

Commented by prakash jain last updated on 28/Mar/15

f(x)=0 or f(x)=1  f(x)=x^k ,  k∈R

$${f}\left({x}\right)=\mathrm{0}\:\mathrm{or}\:{f}\left({x}\right)=\mathrm{1} \\ $$$${f}\left({x}\right)={x}^{{k}} ,\:\:{k}\in\mathrm{R} \\ $$

Answered by prakash jain last updated on 28/Mar/15

f(x^2 )=f(x)∙f(x)  divide by x^2   ((f(x∙x))/(x∙x))=((f(x))/x)∙((f(x))/x)  g(x)=((f(x))/x)  If g(xy)=g(x)g(y)⇒g(x)=x^k , k∈R  hence  f(x)=x^k , k∈R

$${f}\left({x}^{\mathrm{2}} \right)={f}\left({x}\right)\centerdot{f}\left({x}\right) \\ $$$$\mathrm{divide}\:\mathrm{by}\:{x}^{\mathrm{2}} \\ $$$$\frac{{f}\left({x}\centerdot{x}\right)}{{x}\centerdot{x}}=\frac{{f}\left({x}\right)}{{x}}\centerdot\frac{{f}\left({x}\right)}{{x}} \\ $$$${g}\left({x}\right)=\frac{{f}\left({x}\right)}{{x}} \\ $$$$\mathrm{If}\:{g}\left({xy}\right)={g}\left({x}\right){g}\left({y}\right)\Rightarrow{g}\left({x}\right)={x}^{{k}} ,\:{k}\in\mathrm{R} \\ $$$$\mathrm{hence} \\ $$$${f}\left({x}\right)={x}^{{k}} ,\:{k}\in\mathrm{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com