Question Number 134204 by liberty last updated on 01/Mar/21 | ||
$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2x}\right)}\:. \\ $$$$\mathrm{find}\:\mathrm{f}\:'\left(\mathrm{0}\right). \\ $$ | ||
Answered by bramlexs22 last updated on 02/Mar/21 | ||
$$\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2}\left(\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}\right)}\:=\mid\mathrm{4sin}\:\mathrm{x}\:\mid=\mathrm{2}\mid\mathrm{sin}\:\mathrm{x}\:\mid \\ $$$$\:\mathrm{f}\:'\left(\mathrm{0}^{−} \right)=\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\frac{−\mathrm{2sin}\:\mathrm{x}−\mathrm{0}}{\mathrm{x}−\mathrm{0}}=−\mathrm{2}\: \\ $$$$\:\mathrm{f}\:'\left(\mathrm{0}^{+} \right)=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{2sin}\:\mathrm{x}−\mathrm{0}}{\mathrm{x}−\mathrm{0}}\:=\:\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{f}\:'\left(\mathrm{0}^{−} \right)\neq\mathrm{f}\:'\left(\mathrm{0}^{+} \right)\:\mathrm{so}\:\mathrm{f}\:'\left(\mathrm{0}\right)\:\mathrm{is}\: \\ $$$$\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\: \\ $$ | ||