Question Number 1821 by 123456 last updated on 05/Oct/15 | ||
$${f}\left({uv}\right)={f}\left({u}\right){f}\left({v}\right)−{f}\left({u}+{v}\right) \\ $$$${f}\left(\mathrm{0}\right)=? \\ $$$${f}\left(\mathrm{1}\right)=? \\ $$$${f}\left({x}\right)=? \\ $$ | ||
Answered by Rasheed Soomro last updated on 10/Oct/15 | ||
$${f}\left({uv}\right)={f}\left({u}\right){f}\left({v}\right)−{f}\left({u}+{v}\right) \\ $$$${Let}\:{u}=\mathrm{0}\:{and}\:{v}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}.\mathrm{0}\right)={f}\left(\mathrm{0}\right){f}\left(\mathrm{0}\right)−{f}\left(\mathrm{0}+\mathrm{0}\right) \\ $$$${f}\left(\mathrm{0}\right)=\left[{f}\left(\mathrm{0}\right)\right]^{\mathrm{2}} −{f}\left(\mathrm{0}\right) \\ $$$$\left[{f}\left(\mathrm{0}\right)\right]^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)\left[{f}\left(\mathrm{0}\right)−\mathrm{2}\right]=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\:\:{Or}\:{f}\left(\mathrm{0}\right)=\mathrm{2}...................\left({i}\right) \\ $$$$−−−−−−−−−−−−−−−−−−− \\ $$$${Let}\:{u}=\mathrm{1}\:\:{and}\:{v}=\mathrm{0} \\ $$$${f}\left(\mathrm{1}.\mathrm{0}\right)={f}\left(\mathrm{1}\right){f}\left(\mathrm{0}\right)−{f}\left(\mathrm{1}+\mathrm{0}\right) \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right)\left[{f}\left(\mathrm{0}\right)−\mathrm{1}\right] \\ $$$${f}\left(\mathrm{1}\right)=\frac{{f}\left(\mathrm{0}\right)}{{f}\left(\mathrm{0}\right)−\mathrm{1}}...........................\left({ii}\right) \\ $$$${When}\:{f}\left(\mathrm{0}\right)=\mathrm{0},{f}\left(\mathrm{1}\right)=\frac{\mathrm{0}}{\mathrm{0}−\mathrm{1}}=\mathrm{0} \\ $$$${When}\:{f}\left(\mathrm{0}\right)=\mathrm{2},{f}\left(\mathrm{1}\right)=\frac{\mathrm{2}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0}\:\:\:{Or}\:{f}\left(\mathrm{1}\right)=\mathrm{2}...........\left({iii}\right) \\ $$$$−−−−−−−−−−−−−−−−−− \\ $$$${Let}\:{u}={x}\:{and}\:{v}=\mathrm{0} \\ $$$${f}\left({x}.\mathrm{0}\right)={f}\left({x}\right){f}\left(\mathrm{0}\right)−{f}\left({x}+\mathrm{0}\right) \\ $$$${f}\left(\mathrm{0}\right)={f}\left({x}\right)\left[{f}\left(\mathrm{0}\right)−\mathrm{1}\right] \\ $$$${f}\left({x}\right)=\frac{{f}\left(\mathrm{0}\right)}{{f}\left(\mathrm{0}\right)−\mathrm{1}}.................................\left({iv}\right) \\ $$$${When}\:{f}\left(\mathrm{0}\right)=\mathrm{0},{f}\left({x}\right)=\frac{\mathrm{0}}{\mathrm{0}−\mathrm{1}}=\mathrm{0} \\ $$$${When}\:{f}\left(\mathrm{0}\right)=\mathrm{2},{f}\left({x}\right)=\frac{\mathrm{2}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$$${f}\left({x}\right)=\mathrm{0}\:\:{Or}\:{f}\left({x}\right)=\mathrm{2}........................\left({v}\right) \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$$\left({i}\right)\:,\:\left({iii}\right)\:{and}\:\:\left({v}\right)\:{are}\:{answers}. \\ $$$$\left({v}\right)\:{is}\:{general}\:{definition}\:{of}\:{the}\:{function}. \\ $$ | ||