Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 128485 by BHOOPENDRA last updated on 07/Jan/21

f(t)=((1−cos2t)/t)  find laplace transformation?

$${f}\left({t}\right)=\frac{\mathrm{1}−{cos}\mathrm{2}{t}}{{t}} \\ $$$${find}\:{laplace}\:{transformation}? \\ $$

Answered by Dwaipayan Shikari last updated on 07/Jan/21

L(((1−cos2t)/t))⇒I(s)=∫_0 ^∞ e^(−st) ((1−cos2t)/t)dt  I′(s)=−∫_0 ^∞ e^(−st) dt+∫_0 ^∞ e^(−st) cos2t = −(1/s)+(1/2)∫_0 ^∞ e^(−st+2it) +e^(−st−2it)   =−(1/s)+(1/2)((1/(s−2i))+(1/(s+2i)))=−(1/s)+(s/(s^2 +4))  I(s)=log(((√(s^2 +4))/s))+C⇒I(s)=log(((√(s^2 +4))/s))   (C=0)

$$\mathscr{L}\left(\frac{\mathrm{1}−{cos}\mathrm{2}{t}}{{t}}\right)\Rightarrow{I}\left({s}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} \frac{\mathrm{1}−{cos}\mathrm{2}{t}}{{t}}{dt} \\ $$$${I}'\left({s}\right)=−\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {dt}+\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {cos}\mathrm{2}{t}\:=\:−\frac{\mathrm{1}}{{s}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−\boldsymbol{{st}}+\mathrm{2}\boldsymbol{{it}}} +\boldsymbol{{e}}^{−\boldsymbol{{st}}−\mathrm{2}\boldsymbol{{it}}} \\ $$$$=−\frac{\mathrm{1}}{\boldsymbol{{s}}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\boldsymbol{{s}}−\mathrm{2}\boldsymbol{{i}}}+\frac{\mathrm{1}}{\boldsymbol{{s}}+\mathrm{2}\boldsymbol{{i}}}\right)=−\frac{\mathrm{1}}{\boldsymbol{{s}}}+\frac{\boldsymbol{{s}}}{\boldsymbol{{s}}^{\mathrm{2}} +\mathrm{4}} \\ $$$$\boldsymbol{{I}}\left({s}\right)=\boldsymbol{{log}}\left(\frac{\sqrt{\boldsymbol{{s}}^{\mathrm{2}} +\mathrm{4}}}{\boldsymbol{{s}}}\right)+\boldsymbol{{C}}\Rightarrow\boldsymbol{{I}}\left(\boldsymbol{{s}}\right)=\boldsymbol{{log}}\left(\frac{\sqrt{\boldsymbol{{s}}^{\mathrm{2}} +\mathrm{4}}}{\boldsymbol{{s}}}\right)\:\:\:\left(\boldsymbol{{C}}=\mathrm{0}\right) \\ $$

Commented by BHOOPENDRA last updated on 07/Jan/21

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com