Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 156128 by aaaspots last updated on 08/Oct/21

 f:X→Y  f(E\F)=f(E)\f(F)⇒f is 1 to 1    I think it is not true   since let x1 x2 x3∈E ,x3 x4∈F,  and f(x1)=f( x2) it will be not true.    but my friend say by ∼q⇒∼p   f is not 1 to 1  ⇒f(E\F)≠f(E)\f(F),and take  x1 x2∈X, f(x1)=f(x2)=y0  E={x1 ,x2} F={x2}  and  can proof it is true  but I do not know which is true  how to proof it?

$$\:{f}:{X}\rightarrow{Y} \\ $$$${f}\left({E}\backslash{F}\right)={f}\left({E}\right)\backslash{f}\left({F}\right)\Rightarrow{f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$$$ \\ $$$${I}\:{think}\:{it}\:{is}\:{not}\:{true}\: \\ $$$${since}\:{let}\:{x}\mathrm{1}\:{x}\mathrm{2}\:{x}\mathrm{3}\in{E}\:,{x}\mathrm{3}\:{x}\mathrm{4}\in{F}, \\ $$$${and}\:{f}\left({x}\mathrm{1}\right)={f}\left(\:{x}\mathrm{2}\right)\:{it}\:{will}\:{be}\:{not}\:{true}. \\ $$$$ \\ $$$${but}\:{my}\:{friend}\:{say}\:{by}\:\sim{q}\Rightarrow\sim{p} \\ $$$$\:{f}\:{is}\:{not}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$$$\Rightarrow{f}\left({E}\backslash{F}\right)\neq{f}\left({E}\right)\backslash{f}\left({F}\right),{and}\:{take} \\ $$$${x}\mathrm{1}\:{x}\mathrm{2}\in{X},\:{f}\left({x}\mathrm{1}\right)={f}\left({x}\mathrm{2}\right)={y}\mathrm{0} \\ $$$${E}=\left\{{x}\mathrm{1}\:,{x}\mathrm{2}\right\}\:{F}=\left\{{x}\mathrm{2}\right\} \\ $$$${and}\:\:{can}\:{proof}\:{it}\:{is}\:{true} \\ $$$${but}\:{I}\:{do}\:{not}\:{know}\:{which}\:{is}\:{true} \\ $$$${how}\:{to}\:{proof}\:{it}? \\ $$

Answered by TheSupreme last updated on 08/Oct/21

  D={y∣ y=f(x) , x∈E}  C={y∣ y=f(x), x∈F}  if ∀x∈E f is ′1 to 1′ (injective) and ∀x∈inF f(x) is injective and  ∀x∈E,y∈F f(x)≠f(y) so  D\C={y∣ y=f(x), x∈E\F}    dim assuming ∄x∈F,y∈E: f(x)=f(y)

$$ \\ $$$${D}=\left\{{y}\mid\:{y}={f}\left({x}\right)\:,\:{x}\in{E}\right\} \\ $$$${C}=\left\{{y}\mid\:{y}={f}\left({x}\right),\:{x}\in{F}\right\} \\ $$$${if}\:\forall{x}\in{E}\:{f}\:{is}\:'\mathrm{1}\:{to}\:\mathrm{1}'\:\left({injective}\right)\:{and}\:\forall{x}\in{inF}\:{f}\left({x}\right)\:{is}\:{injective}\:{and} \\ $$$$\forall{x}\in{E},{y}\in{F}\:{f}\left({x}\right)\neq{f}\left({y}\right)\:{so} \\ $$$${D}\backslash{C}=\left\{{y}\mid\:{y}={f}\left({x}\right),\:{x}\in{E}\backslash{F}\right\} \\ $$$$ \\ $$$${dim}\:{assuming}\:\nexists{x}\in{F},{y}\in{E}:\:{f}\left({x}\right)={f}\left({y}\right)\: \\ $$

Commented by aaaspots last updated on 08/Oct/21

I still do not understand.  and can we assume f is 1 to 1   when we proof it at first?

$${I}\:{still}\:{do}\:{not}\:{understand}. \\ $$$${and}\:{can}\:{we}\:{assume}\:{f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1}\: \\ $$$${when}\:{we}\:{proof}\:{it}\:{at}\:{first}? \\ $$$$ \\ $$

Commented by aaaspots last updated on 08/Oct/21

well i write f(E\F)=f(E)\f(F)    only if f is 1 to 1

$${well}\:{i}\:{write}\:{f}\left({E}\backslash{F}\right)={f}\left({E}\right)\backslash{f}\left({F}\right)\: \\ $$$$\:{only}\:{if}\:{f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$

Commented by TheSupreme last updated on 08/Oct/21

f(x) is 1 to 1 only if the proposition (1) is true for all E,F ∈ D[f(x)]  D is dominium, prop 1 is your question

$${f}\left({x}\right)\:{is}\:\mathrm{1}\:{to}\:\mathrm{1}\:{only}\:{if}\:{the}\:{proposition}\:\left(\mathrm{1}\right)\:{is}\:{true}\:{for}\:{all}\:{E},{F}\:\in\:{D}\left[{f}\left({x}\right)\right] \\ $$$${D}\:{is}\:{dominium},\:{prop}\:\mathrm{1}\:{is}\:{your}\:{question} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com