Question Number 217541 by hardmath last updated on 15/Mar/25 | ||
![]() | ||
$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)\:=\:? \\ $$ | ||
Answered by mr W last updated on 16/Mar/25 | ||
![]() | ||
$${say}\:{f}\left(\mathrm{0}\right)={k} \\ $$$${f}\left({k}\right)={f}\left({f}\left(\mathrm{0}\right)\right)=\mathrm{0}^{\mathrm{2}} −\mathrm{0}+\mathrm{1}=\mathrm{1} \\ $$$$ \\ $$$${replace}\:{x}\:{with}\:{f}\left({x}\right): \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\right)={f}^{\mathrm{2}} \left({x}\right)−{f}\left({x}\right)+\mathrm{1} \\ $$$$\underline{{f}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)={f}^{\mathrm{2}} \left({x}\right)−{f}\left({x}\right)+\mathrm{1}} \\ $$$${set}\:{x}=\mathrm{0}: \\ $$$${f}\left(\mathrm{1}\right)={f}^{\mathrm{2}} \left(\mathrm{0}\right)−{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)={k}^{\mathrm{2}} −{k}+\mathrm{1} \\ $$$$ \\ $$$${set}\:{x}=\mathrm{1}: \\ $$$${f}\left(\mathrm{1}\right)={f}^{\mathrm{2}} \left(\mathrm{1}\right)−{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$$\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${k}^{\mathrm{2}} −{k}+\mathrm{1}=\mathrm{1} \\ $$$$\Rightarrow{k}\left({k}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0}\:{or}\:\mathrm{1} \\ $$$${if}\:{k}=\mathrm{0},\:{i}.{e}.\:{f}\left(\mathrm{0}\right)=\mathrm{0},\: \\ $$$${but}\:{f}\left({k}\right)={f}\left(\mathrm{0}\right)=\mathrm{1}\neq\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0}\:{is}\:{not}\:{valid}. \\ $$$${so}\:{k}={f}\left(\mathrm{0}\right)=\mathrm{1}\:{is}\:{the}\:{only}\:{solution}. \\ $$ | ||
Commented by hardmath last updated on 16/Mar/25 | ||
![]() | ||
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor} \\ $$ | ||