Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148911 by mathdanisur last updated on 01/Aug/21

f:[−3, 0]→[7, 22]  f(x) = x^2  - 2x + 7  find   f^( −1) (x) = ?

$${f}:\left[−\mathrm{3},\:\mathrm{0}\right]\rightarrow\left[\mathrm{7},\:\mathrm{22}\right] \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:+\:\mathrm{7} \\ $$$${find}\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)\:=\:? \\ $$

Answered by EDWIN88 last updated on 01/Aug/21

f is one−one since f(x_1 )=f(x_2 )  ⇒x_1 ^2 −2x_1 +7=x_2 ^2 −2x_2 +7  ⇒(x_1 −x_2 )(x_1 +x_2 )−2(x_1 −x_2 )=0  ⇒(x_1 −x_2 )(x_1 +x_2 −2)=0  ⇒x_1 =x_2  [ ∵ x_1 +x_2 −2 ≠ 0 ]  let y∈Y then f being onto there  exist x such that y=f(x)  Now y=f(x)=x^2 −2x+7  y=(x−1)^2 +6   ⇒x=1+(√(y−6))   ⇒f^(−1) (y)=1+(√(y−6))  thus we define f^(−1) (x)=1+(√(x−6))

$${f}\:{is}\:{one}−{one}\:{since}\:{f}\left({x}_{\mathrm{1}} \right)={f}\left({x}_{\mathrm{2}} \right) \\ $$$$\Rightarrow{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} +\mathrm{7}={x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{2}} +\mathrm{7} \\ $$$$\Rightarrow\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)−\mathrm{2}\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}_{\mathrm{1}} ={x}_{\mathrm{2}} \:\left[\:\because\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} −\mathrm{2}\:\neq\:\mathrm{0}\:\right] \\ $$$${let}\:{y}\in{Y}\:{then}\:{f}\:{being}\:{onto}\:{there} \\ $$$${exist}\:{x}\:{such}\:{that}\:{y}={f}\left({x}\right) \\ $$$${Now}\:{y}={f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7} \\ $$$${y}=\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{6}\: \\ $$$$\Rightarrow{x}=\mathrm{1}+\sqrt{{y}−\mathrm{6}}\: \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({y}\right)=\mathrm{1}+\sqrt{{y}−\mathrm{6}} \\ $$$${thus}\:{we}\:{define}\:{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{1}+\sqrt{{x}−\mathrm{6}} \\ $$

Commented by mathdanisur last updated on 01/Aug/21

Thank you Ser

$${Thank}\:{you}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com