Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218866 by Nicholas666 last updated on 16/Apr/25

     evaluate the following integral in closed form or express   it in terms of known special functions;                 ∫_  ^∞ K_(i𝛌) (at)J_𝛎 (bt)^(𝛍−1) dt   where;    •K_(i𝛌) (z) is the modified Bessel function         of the second kind with imaginary order i𝛌,         where 𝛌∈R.    • J_𝛎 (z) is the Bessel function of the first kind with order 𝛎 ∈C.         • a,b are positif real constants.    • 𝛍 is a complex parameter statisfying the            conditions for the integral to converge.

$$ \\ $$$$\:\:\:{evaluate}\:{the}\:{following}\:{integral}\:{in}\:{closed}\:{form}\:{or}\:{express} \\ $$$$\:{it}\:{in}\:{terms}\:{of}\:{known}\:{special}\:{functions};\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{ } ^{\infty} \boldsymbol{{K}}_{\boldsymbol{{i}\lambda}} \left(\boldsymbol{{at}}\right)\boldsymbol{{J}}_{\boldsymbol{\nu}} \left(\boldsymbol{{bt}}\right)^{\boldsymbol{\mu}−\mathrm{1}} \boldsymbol{{dt}} \\ $$$$\:\boldsymbol{{where}}; \\ $$$$\:\:\bullet\boldsymbol{{K}}_{\boldsymbol{{i}\lambda}} \left(\boldsymbol{{z}}\right)\:{is}\:{the}\:{modified}\:\boldsymbol{{B}}{essel}\:{function}\: \\ $$$$\:\:\:\:\:\:{of}\:{the}\:{second}\:{kind}\:{with}\:{imaginary}\:{order}\:\boldsymbol{{i}\lambda}, \\ $$$$\:\:\:\:\:\:\:{where}\:\boldsymbol{\lambda}\in\mathbb{R}. \\ $$$$\:\:\bullet\:\boldsymbol{{J}}_{\boldsymbol{\nu}} \left(\boldsymbol{{z}}\right)\:{is}\:{the}\:{Bessel}\:{function}\:{of}\:{the}\:{first}\:{kind}\:{with}\:{order}\:\boldsymbol{\nu}\:\in\mathbb{C}.\:\:\:\:\: \\ $$$$\:\:\bullet\:\boldsymbol{{a}},\boldsymbol{{b}}\:{are}\:{positif}\:{real}\:{constants}. \\ $$$$\:\:\bullet\:\boldsymbol{\mu}\:{is}\:{a}\:{complex}\:{parameter}\:{statisfying}\:{the}\:\:\: \\ $$$$\:\:\:\:\:\:\:{conditions}\:{for}\:{the}\:{integral}\:{to}\:{converge}.\:\:\:\: \\ $$$$ \\ $$$$\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com