Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 189263 by Gbenga last updated on 14/Mar/23

evaluate ∫∫_E ∫15Zdv, where E   is the region between 2x+y+z=4   and 4x+4y+2z=20 which is in   front of the region in the yz plane   bounded by z=2y^2  and z=(√(4y))

$$\boldsymbol{{evaluate}}\:\int\int_{\boldsymbol{\mathrm{E}}} \int\mathrm{15}{Zdv},\:{where}\:{E} \\ $$$$\:{is}\:{the}\:{region}\:{between}\:\mathrm{2}{x}+{y}+{z}=\mathrm{4} \\ $$$$\:{and}\:\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{20}\:{which}\:{is}\:{in}\: \\ $$$${front}\:{of}\:{the}\:{region}\:{in}\:{the}\:{yz}\:{plane}\: \\ $$$${bounded}\:{by}\:{z}=\mathrm{2}{y}^{\mathrm{2}} \:{and}\:{z}=\sqrt{\mathrm{4}{y}} \\ $$

Commented by Gbenga last updated on 15/Mar/23

evaluate ∫∫_E ∫15Zdv, where E   is the region between 2x+y+z=4   and 4x+4y+2z=20 which is in   front of the region in the yz plane   bounded by z=2y^2  and z=(√(4y))  i have make adjustment

$$\boldsymbol{{evaluate}}\:\int\int_{\boldsymbol{\mathrm{E}}} \int\mathrm{15}{Zdv},\:{where}\:{E} \\ $$$$\:{is}\:{the}\:{region}\:{between}\:\mathrm{2}{x}+{y}+{z}=\mathrm{4} \\ $$$$\:{and}\:\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{20}\:{which}\:{is}\:{in}\: \\ $$$${front}\:{of}\:{the}\:{region}\:{in}\:{the}\:{yz}\:{plane}\: \\ $$$${bounded}\:{by}\:{z}=\mathrm{2}{y}^{\mathrm{2}} \:{and}\:{z}=\sqrt{\mathrm{4}{y}} \\ $$$${i}\:{have}\:{make}\:{adjustment} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com