Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 178349 by doline last updated on 15/Oct/22

etudier la fonction suivante 4x^3 −9x^2 +6x+1  calculer les limites puis dresser son tableau de variation

$${etudier}\:{la}\:{fonction}\:{suivante}\:\mathrm{4}{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{1} \\ $$$${calculer}\:{les}\:{limites}\:{puis}\:{dresser}\:{son}\:{tableau}\:{de}\:{variation} \\ $$

Answered by Acem last updated on 16/Oct/22

  lim_(x→∓∞) f(x)= ∓∞   lim_(x→∓∞) [f(x)−y_Δ ]= ∓∞ il n′y a pas d′asymptote oblic pour C_f    f^( ′) (x)= 12x^2 −18x+ 6, f^( ′) (x)= 0   ⇒ p_1 ((1/2), 2.75) , p_2 (1, 2)    determinant (((   x),(−∞),(  (1/2)),,1,(        +∞)),((f(x)),(            + ),(   0),−,0,(   +)),((f(x)),( _(−∞  )  ↗),,( ↘),,( ↗  ^(+∞) )))     Points d′aide:   p_3 (0, 1)  ,  p_4 (−0.1365, 0)_(de la calculatrice graphique)

$$ \\ $$$$\underset{{x}\rightarrow\mp\infty} {\mathrm{lim}}{f}\left({x}\right)=\:\mp\infty \\ $$$$\:\underset{{x}\rightarrow\mp\infty} {\mathrm{lim}}\left[{f}\left({x}\right)−{y}_{\Delta} \right]=\:\mp\infty\:{il}\:{n}'{y}\:{a}\:{pas}\:{d}'{asymptote}\:{oblic}\:{pour}\:{C}_{{f}} \\ $$$$\:{f}^{\:'} \left({x}\right)=\:\mathrm{12}{x}^{\mathrm{2}} −\mathrm{18}{x}+\:\mathrm{6},\:{f}^{\:'} \left({x}\right)=\:\mathrm{0} \\ $$$$\:\Rightarrow\:{p}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{2}.\mathrm{75}\right)\:,\:{p}_{\mathrm{2}} \left(\mathrm{1},\:\mathrm{2}\right) \\ $$$$\underline{ }\begin{array}{|c|c|c|}{\:\:\:{x}}&\hline{−\infty}&\hline{\:\:\frac{\mathrm{1}}{\mathrm{2}}}&\hline{}&\hline{\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:+\infty}\\{{f}\left({x}\right)}&\hline{\:\:\:\:\:\:\:\:\:\:\:\:+\:}&\hline{\:\:\:\mathrm{0}}&\hline{−}&\hline{\mathrm{0}}&\hline{\:\:\:+}\\{{f}\left({x}\right)}&\hline{\:_{−\infty\:\:} \:\nearrow}&\hline{}&\hline{\:\searrow}&\hline{}&\hline{\:\nearrow\:\:\:^{+\infty} }\\\hline\end{array} \\ $$$$ \\ $$$$\:{Points}\:{d}'{aide}: \\ $$$$\:{p}_{\mathrm{3}} \left(\mathrm{0},\:\mathrm{1}\right)\:\:,\:\:{p}_{\mathrm{4}} \left(−\mathrm{0}.\mathrm{1365},\:\mathrm{0}\right)_{{de}\:{la}\:{calculatrice}\:{graphique}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com