Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 149252 by holomata last updated on 04/Aug/21

  e^y =(sin x)(cos x)  find (dy/dx)

$$ \\ $$$${e}^{{y}} =\left(\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{x}\right) \\ $$$${find}\:\frac{{dy}}{{dx}} \\ $$

Answered by Mokmokhi last updated on 04/Aug/21

(dy/dx)=2cot 2x

$$\frac{{dy}}{{dx}}=\mathrm{2cot}\:\mathrm{2}{x} \\ $$

Answered by physicstutes last updated on 04/Aug/21

e^y (dy/dx) = sin x . (−sinx) + (cos x)(cos x)  ⇒ e^y (dy/dx) = cos 2x  (dy/dx)=((cos 2x)/e^y )

$${e}^{{y}} \frac{{dy}}{{dx}}\:=\:\mathrm{sin}\:{x}\:.\:\left(−\mathrm{sin}{x}\right)\:+\:\left(\mathrm{cos}\:{x}\right)\left(\mathrm{cos}\:{x}\right) \\ $$$$\Rightarrow\:{e}^{{y}} \frac{{dy}}{{dx}}\:=\:\mathrm{cos}\:\mathrm{2}{x} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{cos}\:\mathrm{2}{x}}{{e}^{{y}} } \\ $$

Commented by Mokmokhi last updated on 04/Aug/21

please note that e^y  can be presented in terms of x.

$${please}\:{note}\:{that}\:{e}^{{y}} \:{can}\:{be}\:{presented}\:{in}\:{terms}\:{of}\:{x}. \\ $$

Answered by puissant last updated on 04/Aug/21

⇒ y=ln((1/2)(sin(2x)))  (dy/dx)=((cos(2x))/((1/2)sin(2x))) = 2((cos(2x))/(sin(2x)))  ⇒ (dy/dx) = 2cotan(2x)..

$$\Rightarrow\:\mathrm{y}=\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\left(\mathrm{2x}\right)\right)\right) \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2x}\right)}\:=\:\mathrm{2}\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{sin}\left(\mathrm{2x}\right)} \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{2cotan}\left(\mathrm{2x}\right).. \\ $$

Answered by mathmax by abdo last updated on 04/Aug/21

e^(y )  =sinx.cosx ⇒e^y  =(1/2)sin(2x) ⇒y=ln(((sin(2x))/2)) =ln(sin(2x))−ln2  ⇒(dy/dx)=((2cos(2x))/(sin(2x)))=2cotan(2x)

$$\mathrm{e}^{\mathrm{y}\:} \:=\mathrm{sinx}.\mathrm{cosx}\:\Rightarrow\mathrm{e}^{\mathrm{y}} \:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2x}\right)\:\Rightarrow\mathrm{y}=\mathrm{ln}\left(\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2}}\right)\:=\mathrm{ln}\left(\mathrm{sin}\left(\mathrm{2x}\right)\right)−\mathrm{ln2} \\ $$$$\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{2cos}\left(\mathrm{2x}\right)}{\mathrm{sin}\left(\mathrm{2x}\right)}=\mathrm{2cotan}\left(\mathrm{2x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com