Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195652 by mustafazaheen last updated on 06/Aug/23

  e^(x+y) −e^(x−y) =1  then find   (dy/dx)=?

$$ \\ $$$$\mathrm{e}^{\mathrm{x}+\mathrm{y}} −\mathrm{e}^{\mathrm{x}−\mathrm{y}} =\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$

Answered by MM42 last updated on 06/Aug/23

(e^(x+y) −e^(x−y) =1)×e^y   e^x ×e^(2y) −e^y −e^x =0  ⇒e^y =((1+(√(1+4e^(2x) )))/(2e^x ))  ⇒y=ln(1+(√(1+4e^(2x) )))−x−ln2  ⇒(dy/dx)=(((8e^(2x) )/(2(√(1+4e^(2x) ))))/(1+(√(1+4e^(2x) ))))−1=((−1)/( (√(1+4e^(2x) )))) ✓

$$\left({e}^{{x}+{y}} −{e}^{{x}−{y}} =\mathrm{1}\right)×{e}^{{y}} \\ $$$${e}^{{x}} ×{e}^{\mathrm{2}{y}} −{e}^{{y}} −{e}^{{x}} =\mathrm{0} \\ $$$$\Rightarrow{e}^{{y}} =\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{e}^{\mathrm{2}{x}} }}{\mathrm{2}{e}^{{x}} } \\ $$$$\Rightarrow{y}={ln}\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{e}^{\mathrm{2}{x}} }\right)−{x}−{ln}\mathrm{2} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{\frac{\mathrm{8}{e}^{\mathrm{2}{x}} }{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}{e}^{\mathrm{2}{x}} }}}{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{e}^{\mathrm{2}{x}} }}−\mathrm{1}=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{e}^{\mathrm{2}{x}} }}\:\checkmark \\ $$$$ \\ $$

Answered by mahdipoor last updated on 06/Aug/23

e^(x+y) (1+(dy/dx))−e^(x−y) (1−(dy/dx))=0  ⇒−((e^(x+y) −e^(x−y) )/(e^(x+y) +e^(x−y) ))=(dy/dx)

$${e}^{{x}+{y}} \left(\mathrm{1}+\frac{{dy}}{{dx}}\right)−{e}^{{x}−{y}} \left(\mathrm{1}−\frac{{dy}}{{dx}}\right)=\mathrm{0} \\ $$$$\Rightarrow−\frac{{e}^{{x}+{y}} −{e}^{{x}−{y}} }{{e}^{{x}+{y}} +{e}^{{x}−{y}} }=\frac{{dy}}{{dx}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com