Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 115696 by Dwaipayan Shikari last updated on 27/Sep/20

e^x =logx

$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Sep/20

e^x =logx  e^e^x  =x  e^e^e^e^d^d^d      =x  e^x =x  x=logx  e^(−logx) =(1/(logx))  −logxe^(−logx) =−  −logx=W_0 (−1)  x=e^(−W_0 (−1))    (Complex solution x∈C)  Error!  e^x =logx  And e^x =x   (dosen′t satisfy any condition)

$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$$$\mathrm{e}^{\mathrm{e}^{\mathrm{x}} } =\mathrm{x} \\ $$$$\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{\mathrm{d}^{\mathrm{d}^{\mathrm{d}} } } } } } =\mathrm{x} \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{x} \\ $$$$\mathrm{x}=\mathrm{logx} \\ $$$$\mathrm{e}^{−\mathrm{logx}} =\frac{\mathrm{1}}{\mathrm{logx}} \\ $$$$−\mathrm{logxe}^{−\mathrm{logx}} =− \\ $$$$−\mathrm{logx}=\mathrm{W}_{\mathrm{0}} \left(−\mathrm{1}\right) \\ $$$$\mathrm{x}=\mathrm{e}^{−\mathrm{W}_{\mathrm{0}} \left(−\mathrm{1}\right)} \:\:\:\left(\mathrm{Complex}\:\mathrm{solution}\:\mathrm{x}\in\mathbb{C}\right) \\ $$$$\mathrm{Error}! \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$$$\mathrm{And}\:\mathrm{e}^{\mathrm{x}} =\mathrm{x}\:\:\:\left(\mathrm{dosen}'\mathrm{t}\:\mathrm{satisfy}\:\mathrm{any}\:\mathrm{condition}\right) \\ $$$$ \\ $$

Commented by TANMAY PANACEA last updated on 27/Sep/20

from graph it is clear that e^x  and lnx never cross  each other ...so no solution

$${from}\:{graph}\:{it}\:{is}\:{clear}\:{that}\:{e}^{{x}} \:{and}\:{lnx}\:{never}\:{cross} \\ $$$${each}\:{other}\:...{so}\:{no}\:{solution} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Sep/20

Complex solution   No real solution

$$\mathrm{Complex}\:\mathrm{solution}\: \\ $$$$\mathrm{No}\:\mathrm{real}\:\mathrm{solution}\: \\ $$

Commented by TANMAY PANACEA last updated on 27/Sep/20

ok

$${ok} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com