Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 198001 by mathlove last updated on 07/Oct/23

∫(e)^((x)^(lnx) )  dx=?

$$\int\left({e}\right)^{\left({x}\right)^{{lnx}} } \:{dx}=? \\ $$

Commented by Frix last updated on 07/Oct/23

(e)^((x)^(ln x) ) =e^((x^(ln x) )) ≠(e^x )^(ln x) =e^(xln x) =x^x   Now what do you mean???

$$\left(\mathrm{e}\right)^{\left({x}\right)^{\mathrm{ln}\:{x}} } =\mathrm{e}^{\left({x}^{\mathrm{ln}\:{x}} \right)} \neq\left(\mathrm{e}^{{x}} \right)^{\mathrm{ln}\:{x}} =\mathrm{e}^{{x}\mathrm{ln}\:{x}} ={x}^{{x}} \\ $$$$\mathrm{Now}\:\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}??? \\ $$

Commented by mathlove last updated on 08/Oct/23

e^((x^(lnx) ))

$${e}^{\left({x}^{{lnx}} \right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com