Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64579 by Tawa1 last updated on 19/Jul/19

∫ e^x^2   dx    can we get a close form of this integral or analytic solution

$$\int\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{close}\:\mathrm{form}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{or}\:\mathrm{analytic}\:\mathrm{solution} \\ $$

Commented by mathmax by abdo last updated on 19/Jul/19

at form of serie  ∫ e^x^2  dx =∫ Σ_(n=0) ^∞  (x^(2n) /(n!))dx =Σ_(n=0) ^∞  (1/(n!))∫ x^(2n) dx   =Σ_(n=0) ^∞  (x^(2n+1) /((2n+1)n!)) +c    with radius of convergence R=+∞

$${at}\:{form}\:{of}\:{serie} \\ $$$$\int\:{e}^{{x}^{\mathrm{2}} } {dx}\:=\int\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}} }{{n}!}{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\int\:{x}^{\mathrm{2}{n}} {dx}\: \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!}\:+{c}\:\:\:\:{with}\:{radius}\:{of}\:{convergence}\:{R}=+\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com