Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30321 by rahul 19 last updated on 20/Feb/18

∫_(−∞) ^∞ (e^(ax) /(e^x +1))dx=?

$$\int_{−\infty} ^{\infty} \frac{\mathrm{e}^{\mathrm{a}{x}} }{\mathrm{e}^{{x}} +\mathrm{1}}{dx}=? \\ $$

Commented by rahul 19 last updated on 20/Feb/18

what′s residus theorem?

$$\mathrm{what}'\mathrm{s}\:\mathrm{residus}\:\mathrm{theorem}? \\ $$

Commented by abdo imad last updated on 20/Feb/18

ch. e^x =t  ⇔x=lnt ⇒ I= ∫_0 ^∞    (t^a /(t+1)) (dt/t) =∫_0 ^∞   (t^(a−1) /(1+t))dt   this integral converges ⇔ 0<a<1  and we prove by  residus theorem that I = (π/(sin(πa))) .

$${ch}.\:{e}^{{x}} ={t}\:\:\Leftrightarrow{x}={lnt}\:\Rightarrow\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}} }{{t}+\mathrm{1}}\:\frac{{dt}}{{t}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\: \\ $$$${this}\:{integral}\:{converges}\:\Leftrightarrow\:\mathrm{0}<{a}<\mathrm{1}\:\:{and}\:{we}\:{prove}\:{by} \\ $$$${residus}\:{theorem}\:{that}\:{I}\:=\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:. \\ $$

Commented by abdo imad last updated on 20/Feb/18

for this theorem there are many cases let take for example  F(x)= ((p(x))/(q(x))) with p and q polynoials  /∫_(−∞) ^(+∞)  ((p(x))/(q(x)))dx is  convergent and q(x) have roots not reals( z_i )_(1≤i≤p)  so  ∫_(−∞) ^(+∞)  ((p(x))/(q(x)))dx=2iπ Σ_(z∈P^+ )   Res(F, z) with  P^+  ={z∈C/z pole of  Fand im(z)>0} but you must take  alook in the book of complex analysis...

$${for}\:{this}\:{theorem}\:{there}\:{are}\:{many}\:{cases}\:{let}\:{take}\:{for}\:{example} \\ $$$${F}\left({x}\right)=\:\frac{{p}\left({x}\right)}{{q}\left({x}\right)}\:{with}\:{p}\:{and}\:{q}\:{polynoials}\:\:/\int_{−\infty} ^{+\infty} \:\frac{{p}\left({x}\right)}{{q}\left({x}\right)}{dx}\:{is} \\ $$$${convergent}\:{and}\:{q}\left({x}\right)\:{have}\:{roots}\:{not}\:{reals}\left(\:{z}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{p}} \:{so} \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{p}\left({x}\right)}{{q}\left({x}\right)}{dx}=\mathrm{2}{i}\pi\:\sum_{{z}\in{P}^{+} } \:\:{Res}\left({F},\:{z}\right)\:{with} \\ $$$${P}^{+} \:=\left\{{z}\in{C}/{z}\:{pole}\:{of}\:\:{Fand}\:{im}\left({z}\right)>\mathrm{0}\right\}\:{but}\:{you}\:{must}\:{take} \\ $$$${alook}\:{in}\:{the}\:{book}\:{of}\:{complex}\:{analysis}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com