Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122838 by bemath last updated on 20/Nov/20

  ∫ (dx/( (((x−1)^3 (x+2)^5 ))^(1/4) )) ?

$$\:\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }}\:? \\ $$

Answered by liberty last updated on 20/Nov/20

 because (((x−1)^3 (x+2)^5 ))^(1/4)  = (x−1)(x+2) (((x+2)/(x−1)))^(1/4)    let u = (((x+2)/(x−1)))^(1/4)  ⇒ x = ((u^4 +2)/(u^4 −1))    { ((x−1=(3/(u^4 −1)))),((x+2=((3u^4 )/(u^4 −1)))) :} and dx = ((−12u^3 )/((u^4 −1)^2 )) du  L(x)=−∫ (((u^4 −1)^2 .12u^3 )/(3.3u^4 (u^4 −1)^2 u)) du   L(x)=−(4/3)∫ (du/u^2 ) = (4/(3u)) + c  L(x)= (4/3)(((x−1)/(x+2)))^(1/4)  + c.

$$\:{because}\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }\:=\:\left({x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right)\:\sqrt[{\mathrm{4}}]{\frac{{x}+\mathrm{2}}{{x}−\mathrm{1}}} \\ $$$$\:{let}\:{u}\:=\:\sqrt[{\mathrm{4}}]{\frac{{x}+\mathrm{2}}{{x}−\mathrm{1}}}\:\Rightarrow\:{x}\:=\:\frac{{u}^{\mathrm{4}} +\mathrm{2}}{{u}^{\mathrm{4}} −\mathrm{1}} \\ $$$$\:\begin{cases}{{x}−\mathrm{1}=\frac{\mathrm{3}}{{u}^{\mathrm{4}} −\mathrm{1}}}\\{{x}+\mathrm{2}=\frac{\mathrm{3}{u}^{\mathrm{4}} }{{u}^{\mathrm{4}} −\mathrm{1}}}\end{cases}\:{and}\:{dx}\:=\:\frac{−\mathrm{12}{u}^{\mathrm{3}} }{\left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} }\:{du} \\ $$$${L}\left({x}\right)=−\int\:\frac{\left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} .\mathrm{12}{u}^{\mathrm{3}} }{\mathrm{3}.\mathrm{3}{u}^{\mathrm{4}} \left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} {u}}\:{du}\: \\ $$$${L}\left({x}\right)=−\frac{\mathrm{4}}{\mathrm{3}}\int\:\frac{{du}}{{u}^{\mathrm{2}} }\:=\:\frac{\mathrm{4}}{\mathrm{3}{u}}\:+\:{c} \\ $$$${L}\left({x}\right)=\:\frac{\mathrm{4}}{\mathrm{3}}\sqrt[{\mathrm{4}}]{\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}}\:+\:{c}.\: \\ $$

Commented by bemath last updated on 20/Nov/20

great

$${great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com