Question Number 44148 by LXZ last updated on 22/Sep/18 | ||
![]() | ||
$$\int{dx}/{sinx}\centerdot{sin}\left({x}+\alpha\right)=? \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18 | ||
![]() | ||
$$\int\frac{{dx}}{{sinx}.{sin}\left({x}+\alpha\right)} \\ $$$$\frac{\mathrm{1}}{{sin}\alpha}\int\frac{{sin}\left\{\left({x}+\alpha\right)−{x}\right\}}{{sinx}.{sin}\left({x}+\alpha\right)}{dx} \\ $$$$\frac{\mathrm{1}}{{sin}\alpha}\int\frac{{sin}\left({x}+\alpha\right){cosx}−{cos}\left({x}+\alpha\right){sinx}}{{sinxsin}\left({x}+\alpha\right)}{dx} \\ $$$$\frac{\mathrm{1}}{{sin}\alpha}\left[\int{cotx}−{cot}\left({x}+\alpha\right)\right]{dx} \\ $$$$\frac{\mathrm{1}}{{sin}\alpha}\left[{lnsinx}−{lnsin}\left({x}+\alpha\right)\right] \\ $$$$\frac{\mathrm{1}}{{sin}\alpha}{ln}\left\{\frac{{sinx}}{{sin}\left({x}+\alpha\right)}\right\}+{c} \\ $$ | ||