Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64642 by mmkkmm000m last updated on 19/Jul/19

∫(dx)/e^x +x

$$\int\left({dx}\right)/{e}^{{x}} +{x} \\ $$

Commented by mathmax by abdo last updated on 20/Jul/19

let I =∫   (dx/(x+e^x )) ⇒I =∫   (e^(−x) /(xe^(−x)  +1))dx   if we know that ∣x∣<1 we get  I =∫ e^(−x) (Σ_(n=0) ^∞ (−1)^n (xe^(−x) )^n )=Σ_(n=0) ^∞ (−1)^n  ∫   x^n e^(−(n+1)x) dx  =_((n+1)x =t)     Σ_(n=0) ^∞ (−1)^n  ∫  (t^n /((n+1)^n )) e^(−t)  (dt/((n+1)))  =Σ_(n=0) ^∞ (((−1)^n )/((n+1)^(n+1) )) ∫  t^n  e^(−t) dt =Σ_(n=0) ^∞  (((−1)^n )/((n+1)^(n+1) )) A_n   with A_n =∫ t^n  e^(−t)  dt  this sequence can be known if we have  the limits of integral...

$${let}\:{I}\:=\int\:\:\:\frac{{dx}}{{x}+{e}^{{x}} }\:\Rightarrow{I}\:=\int\:\:\:\frac{{e}^{−{x}} }{{xe}^{−{x}} \:+\mathrm{1}}{dx}\:\:\:{if}\:{we}\:{know}\:{that}\:\mid{x}\mid<\mathrm{1}\:{we}\:{get} \\ $$$${I}\:=\int\:{e}^{−{x}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left({xe}^{−{x}} \right)^{{n}} \right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int\:\:\:{x}^{{n}} {e}^{−\left({n}+\mathrm{1}\right){x}} {dx} \\ $$$$=_{\left({n}+\mathrm{1}\right){x}\:={t}} \:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int\:\:\frac{{t}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\:{e}^{−{t}} \:\frac{{dt}}{\left({n}+\mathrm{1}\right)} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\int\:\:{t}^{{n}} \:{e}^{−{t}} {dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:{A}_{{n}} \\ $$$${with}\:{A}_{{n}} =\int\:{t}^{{n}} \:{e}^{−{t}} \:{dt}\:\:{this}\:{sequence}\:{can}\:{be}\:{known}\:{if}\:{we}\:{have} \\ $$$${the}\:{limits}\:{of}\:{integral}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com