Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176648 by mokys last updated on 23/Sep/22

∫ (dx/(a+bcosx))        ∫ (dx/(a−bsinx))

$$\int\:\frac{{dx}}{{a}+{bcosx}}\:\:\:\: \\ $$$$ \\ $$$$\int\:\frac{{dx}}{{a}−{bsinx}} \\ $$

Commented by mokys last updated on 24/Sep/22

???]]]]

$$\left.?\left.?\left.?\left.\right]\right]\right]\right] \\ $$

Answered by Ar Brandon last updated on 24/Sep/22

∫(dx/(a+bcosx))=∫(2/(a+b(((1−t^2 )/(1+t^2 )))))∙(1/(1+t^2 ))dt  =2∫(dt/((a−b)t^2 +a+b))  =(2/( (√(a^2 −b^2 ))))arctan(t(√((a−b)/(a+b))))+C  =(2/( (√(a^2 −b^2 ))))arctan((√((a−b)/(a+b)))tan((x/2)))+C

$$\int\frac{{dx}}{{a}+{b}\mathrm{cos}{x}}=\int\frac{\mathrm{2}}{{a}+{b}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}\centerdot\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{2}\int\frac{{dt}}{\left({a}−{b}\right){t}^{\mathrm{2}} +{a}+{b}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\mathrm{arctan}\left({t}\sqrt{\frac{{a}−{b}}{{a}+{b}}}\right)+{C} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\mathrm{arctan}\left(\sqrt{\frac{{a}−{b}}{{a}+{b}}}\mathrm{tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)+{C} \\ $$

Answered by BaliramKumar last updated on 24/Sep/22

∫(( dx)/(a−bsinx)) = ∫(dx/(a−b[((2tan((x/2)))/(1+tan^2 ((x/2))))]))  Let   tan((x/2)) = y  then   sec^2 ((x/2))∙(1/2)∙dx = dy     [1+tan^2 ((x/2))]∙(dx/2) = dy,   dx = ((2dy)/(1+y^2 ))  ∫(2/(a−b(((2y)/(1+y^2 )))))∙(dy/(1+y^2 )) = ∫((2dy)/(a+ay^2 −2by))  (2/a) ∫(dy/(y^2 −2((b/a))y+1)) = (2/a)∫(dy/((y−(b/a))^2 +(((√(a^2 −b^2 ))/a))^2 ))  (2/a)∙(a/( (√(a^2 −b^2 ))))∙tan^(−1) (((ay−b)/( (√(a^2 −b^2 ))))) + C  (2/( (√(a^2 −b^2 ))))∙tan^(−1) [((a∙tan((x/2))−b)/( (√(a^2 −b^2 ))))] + C

$$\int\frac{\:{dx}}{{a}−{bsinx}}\:=\:\int\frac{{dx}}{{a}−{b}\left[\frac{\mathrm{2}{tan}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\right]} \\ $$$${Let}\:\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:=\:{y}\:\:{then}\:\:\:{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot{dx}\:=\:{dy} \\ $$$$\:\:\:\left[\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right]\centerdot\frac{{dx}}{\mathrm{2}}\:=\:{dy},\:\:\:{dx}\:=\:\frac{\mathrm{2}{dy}}{\mathrm{1}+{y}^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{2}}{{a}−{b}\left(\frac{\mathrm{2}{y}}{\mathrm{1}+{y}^{\mathrm{2}} }\right)}\centerdot\frac{{dy}}{\mathrm{1}+{y}^{\mathrm{2}} }\:=\:\int\frac{\mathrm{2}{dy}}{{a}+{ay}^{\mathrm{2}} −\mathrm{2}{by}} \\ $$$$\frac{\mathrm{2}}{{a}}\:\int\frac{{dy}}{{y}^{\mathrm{2}} −\mathrm{2}\left(\frac{{b}}{{a}}\right){y}+\mathrm{1}}\:=\:\frac{\mathrm{2}}{{a}}\int\frac{{dy}}{\left({y}−\frac{{b}}{{a}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{a}}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}}{{a}}\centerdot\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\centerdot{tan}^{−\mathrm{1}} \left(\frac{{ay}−{b}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)\:+\:{C} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\centerdot{tan}^{−\mathrm{1}} \left[\frac{{a}\centerdot{tan}\left(\frac{{x}}{\mathrm{2}}\right)−{b}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right]\:+\:{C} \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com