Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166725 by cortano1 last updated on 26/Feb/22

   ∫ (dx/(3+tan x))=?

$$\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{3}+\mathrm{tan}\:\mathrm{x}}=? \\ $$

Commented by MJS_new last updated on 26/Feb/22

∫(dx/(3+tan x))=       [t=tan x → dx=(dt/(t^2 +1))]=  =∫(dt/((t+3)(t^2 +1)))=  =(3/(10))∫(dt/(t^2 +1))−(1/(10))∫(t/(t^2 +1))dt+(1/(10))∫(dt/(t+3))=  =(3/(10))arctan t −(1/(20))ln (t^2 +1) +(1/(10))ln (t+3) =  ...  =(3/(10))x+(1/(10))ln ∣sin x +3cos x∣ +C

$$\int\frac{{dx}}{\mathrm{3}+\mathrm{tan}\:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right]= \\ $$$$=\int\frac{{dt}}{\left({t}+\mathrm{3}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{10}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{10}}\int\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}+\frac{\mathrm{1}}{\mathrm{10}}\int\frac{{dt}}{{t}+\mathrm{3}}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{10}}\mathrm{arctan}\:{t}\:−\frac{\mathrm{1}}{\mathrm{20}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{10}}\mathrm{ln}\:\left({t}+\mathrm{3}\right)\:= \\ $$$$... \\ $$$$=\frac{\mathrm{3}}{\mathrm{10}}{x}+\frac{\mathrm{1}}{\mathrm{10}}\mathrm{ln}\:\mid\mathrm{sin}\:{x}\:+\mathrm{3cos}\:{x}\mid\:+{C} \\ $$

Commented by peter frank last updated on 27/Feb/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by som(math1967) last updated on 26/Feb/22

∫((cosxdx)/(3cosx+sinx))  let cosx=l(3cosx+sinx)+(d/dx)m(3cosx+sinx)  =(3l+m)cosx+(l−3m)sinx  ∴3l+m=1   l−3m=0  ∴l=(3/(10)),    m=(1/(10))  ∫((3(3cosx+sinx)dx)/(10(3cosx+sinx))) +(1/(10))∫((d(3cosx+sinx))/(3cosx+sinx))  =(3/(10))x+(1/(10))ln∣3cosx+sinx∣ +C

$$\int\frac{{cosxdx}}{\mathrm{3}{cosx}+{sinx}} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{cosx}}=\boldsymbol{{l}}\left(\mathrm{3}\boldsymbol{{cosx}}+\boldsymbol{{sinx}}\right)+\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\boldsymbol{{m}}\left(\mathrm{3}\boldsymbol{{cosx}}+\boldsymbol{{sinx}}\right) \\ $$$$=\left(\mathrm{3}\boldsymbol{{l}}+\boldsymbol{{m}}\right)\boldsymbol{{cosx}}+\left(\boldsymbol{{l}}−\mathrm{3}\boldsymbol{{m}}\right)\boldsymbol{{sinx}} \\ $$$$\therefore\mathrm{3}\boldsymbol{{l}}+\boldsymbol{{m}}=\mathrm{1}\: \\ $$$$\boldsymbol{{l}}−\mathrm{3}\boldsymbol{{m}}=\mathrm{0} \\ $$$$\therefore\boldsymbol{{l}}=\frac{\mathrm{3}}{\mathrm{10}},\:\:\:\:\boldsymbol{{m}}=\frac{\mathrm{1}}{\mathrm{10}} \\ $$$$\int\frac{\mathrm{3}\left(\mathrm{3}{cosx}+{sinx}\right){dx}}{\mathrm{10}\left(\mathrm{3}{cosx}+{sinx}\right)}\:+\frac{\mathrm{1}}{\mathrm{10}}\int\frac{{d}\left(\mathrm{3}{cosx}+{sinx}\right)}{\mathrm{3}{cosx}+{sinx}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{10}}{x}+\frac{\mathrm{1}}{\mathrm{10}}{ln}\mid\mathrm{3}{cosx}+{sinx}\mid\:+\boldsymbol{{C}} \\ $$

Answered by muneer0o0 last updated on 26/Feb/22

 I = ∫(dx/(3+tan x))    I=∫((sec^2 x − tan^2 x  )/(3+tan x)) dx     I=∫((sec^2 x )/(3+tan x)) dx  +∫(( −tan^2 x   )/(3+tan x)) dx     I=∫((sec^2 x )/(3+tan x)) dx  +∫(( 9−tan^2 x−9   )/(3+tan x)) dx     I=∫((sec^2 x )/(3+tan x)) dx  +∫(( (3+tan x)(3−tan x)   )/(3+tan x)) dx −9∫(dx/(3+tan x))    I=∫((sec^2 x )/(3+tan x)) dx  +∫(3−tan x ) dx −9I   10 I= ln (3+tan x)  +3x+ln( cos x) + c    I= (1/(10))(ln (3+tan x)  +3x+ln( cos x) + c)

$$\:{I}\:=\:\int\frac{{dx}}{\mathrm{3}+\mathrm{tan}\:{x}} \\ $$$$\:\:{I}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}\:−\:\mathrm{tan}^{\mathrm{2}} {x}\:\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\: \\ $$$$\:\:{I}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\:\:+\int\frac{\:−\mathrm{tan}^{\mathrm{2}} {x}\:\:\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\: \\ $$$$\:\:{I}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\:\:+\int\frac{\:\mathrm{9}−\mathrm{tan}^{\mathrm{2}} {x}−\mathrm{9}\:\:\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\: \\ $$$$\:\:{I}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\:\:+\int\frac{\:\cancel{\left(\mathrm{3}+\mathrm{tan}\:{x}\right)}\left(\mathrm{3}−\mathrm{tan}\:{x}\right)\:\:\:}{\cancel{\mathrm{3}+\mathrm{tan}\:{x}}}\:{dx}\:−\mathrm{9}\int\frac{{dx}}{\mathrm{3}+\mathrm{tan}\:{x}} \\ $$$$\:\:{I}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}\:}{\mathrm{3}+\mathrm{tan}\:{x}}\:{dx}\:\:+\int\left(\mathrm{3}−\mathrm{tan}\:{x}\:\right)\:{dx}\:−\mathrm{9}{I} \\ $$$$\:\mathrm{10}\:{I}=\:\mathrm{ln}\:\left(\mathrm{3}+\mathrm{tan}\:{x}\right)\:\:+\mathrm{3}{x}+\mathrm{ln}\left(\:\mathrm{cos}\:{x}\right)\:+\:{c} \\ $$$$\:\:{I}=\:\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{ln}\:\left(\mathrm{3}+\mathrm{tan}\:{x}\right)\:\:+\mathrm{3}{x}+\mathrm{ln}\left(\:\mathrm{cos}\:{x}\right)\:+\:{c}\right) \\ $$

Commented by peter frank last updated on 27/Feb/22

thank you

$$\mathrm{thank}\:\mathrm{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com