Question Number 139776 by mohammad17 last updated on 01/May/21 | ||
$$\int\:\frac{{dx}}{\mathrm{2}{cos}\left({x}\right)+\mathrm{3}{sin}\left({x}\right)} \\ $$ | ||
Answered by phanphuoc last updated on 01/May/21 | ||
$${dx}/{rcos}\left({x}+\alpha\right) \\ $$ | ||
Answered by qaz last updated on 01/May/21 | ||
$$\int\frac{{dx}}{\mathrm{2cos}\:{x}+\mathrm{3sin}\:{x}}=\int\frac{\mathrm{2cos}\:{x}−\mathrm{3sin}\:{x}}{\mathrm{4cos}\:^{\mathrm{2}} {x}−\mathrm{9sin}\:^{\mathrm{2}} {x}}{dx} \\ $$$$=\mathrm{2}\int\frac{\mathrm{cos}\:{x}}{\mathrm{4}−\mathrm{13sin}\:^{\mathrm{2}} {x}}{dx}−\mathrm{3}\int\frac{\mathrm{sin}\:{x}}{\mathrm{13cos}\:^{\mathrm{2}} {x}−\mathrm{9}}{dx} \\ $$$$=\mathrm{2}\centerdot\frac{\mathrm{1}}{\mathrm{2}×\mathrm{2}×\sqrt{\mathrm{13}}}{ln}\mid\frac{\sqrt{\mathrm{13}}\mathrm{sin}\:{x}+\mathrm{2}}{\:\sqrt{\mathrm{13}}\mathrm{sin}\:{x}−\mathrm{2}}\mid+\mathrm{3}\centerdot\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}×\sqrt{\mathrm{13}}}{ln}\mid\frac{\sqrt{\mathrm{13}}\mathrm{cos}\:{x}−\mathrm{3}}{\:\sqrt{\mathrm{13}}\mathrm{cos}\:{x}+\mathrm{3}}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{13}}}{ln}\mid\frac{\sqrt{\mathrm{13}}\mathrm{sin}\:{x}+\mathrm{2}}{\:\sqrt{\mathrm{13}}\mathrm{sin}\:{x}−\mathrm{2}}\centerdot\frac{\sqrt{\mathrm{13}}\mathrm{cos}\:{x}−\mathrm{3}}{\:\sqrt{\mathrm{13}}\mathrm{cos}\:{x}+\mathrm{3}}\mid+{C} \\ $$ | ||
Answered by Ankushkumarparcha last updated on 01/May/21 | ||
$${Solution}:\:{say}\:{I}\:=\:\int\:\frac{{dx}}{\mathrm{2cos}\left({x}\right)+\mathrm{3sin}\left({x}\right)}\: \\ $$$${Using}\:{Weierstrass}\:{Substitution}. \\ $$$${I}\:=\:\int\:\:\frac{\mathrm{2}}{\mathrm{2}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)+\mathrm{3}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)}\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=>\:\int\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}−{t}^{\mathrm{2}} }\:=>\:−\int\:\frac{{dt}}{\left({t}\:−\:\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${I}\:=\:\int\:\frac{{dx}}{\mathrm{2cos}\left({x}\right)+\mathrm{3sin}\left({x}\right)}\:=\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{13}}}\:\mathrm{log}\mid\frac{\mathrm{2tan}\left({x}/\mathrm{2}\right)−\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2tan}\left({x}/\mathrm{2}\right)−\mathrm{3}+\sqrt{\mathrm{13}}}\mid\:+{C} \\ $$ | ||