Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87103 by hamdhan last updated on 02/Apr/20

∫(dx/((1+x)(√(x−x^2 ))))

$$\int\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{{x}−{x}^{\mathrm{2}} }} \\ $$

Commented by abdomathmax last updated on 02/Apr/20

I =∫  (dx/((x+1)(√(−(x^2 −x))))) =∫  (dx/((x+1)(√(−(x^2 −x +(1/4)−(1/4))))))  =∫     (dx/((x+1)(√((1/4)−(x−(1/2))^2 )))) changement  x−(1/2)=(1/2)sint give  I =∫      ((cost dt)/(2((1/2)+(1/2)sint)(1/2)cost))  =∫   ((2dt)/(1+sint)) =_(tan((t/2))=u)     2 ∫   ((2du)/((1+u^2 )(1+((2u)/(1+u^2 )))))  =4 ∫    (du/(1+u^2  +2u)) =4 ∫  (du/((u+1)^2 )) =−(4/(1+u)) +C  =−(4/(1+tan((t/2)))) +C  t =arcsin(2x−1) ⇒  I  =((−4)/(1+tan((1/2)arcsin(2x−1)))) +C

$${I}\:=\int\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{−\left({x}^{\mathrm{2}} −{x}\right)}}\:=\int\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{−\left({x}^{\mathrm{2}} −{x}\:+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\right)}} \\ $$$$=\int\:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }}\:{changement} \\ $$$${x}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}{sint}\:{give} \\ $$$${I}\:=\int\:\:\:\:\:\:\frac{{cost}\:{dt}}{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{sint}\right)\frac{\mathrm{1}}{\mathrm{2}}{cost}} \\ $$$$=\int\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\:\mathrm{2}\:\int\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\mathrm{4}\:\int\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{2}{u}}\:=\mathrm{4}\:\int\:\:\frac{{du}}{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }\:=−\frac{\mathrm{4}}{\mathrm{1}+{u}}\:+{C} \\ $$$$=−\frac{\mathrm{4}}{\mathrm{1}+{tan}\left(\frac{{t}}{\mathrm{2}}\right)}\:+{C} \\ $$$${t}\:={arcsin}\left(\mathrm{2}{x}−\mathrm{1}\right)\:\Rightarrow \\ $$$${I}\:\:=\frac{−\mathrm{4}}{\mathrm{1}+{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}{arcsin}\left(\mathrm{2}{x}−\mathrm{1}\right)\right)}\:+{C} \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 02/Apr/20

Nice

$${Nice} \\ $$

Answered by hamdhan last updated on 02/Apr/20

x=sin^2 t;  dx=2sin tcos t dt  ∫((2sint.cost)/((1+sint)(√(sin^2 t−sin^4 t))))dt  ∫(2/((1+sint)))dt  ∫((2(1−sint))/(cos^2 t))dt  2∫(sec^2 t−tant.sect)dt  2tant−2sect + C  next step can do.....

$${x}={sin}^{\mathrm{2}} {t}; \\ $$$${dx}=\mathrm{2sin}\:{t}\mathrm{cos}\:{t}\:{dt} \\ $$$$\int\frac{\mathrm{2}{sint}.{cost}}{\left(\mathrm{1}+{sint}\right)\sqrt{{sin}^{\mathrm{2}} {t}−{sin}^{\mathrm{4}} {t}}}{dt} \\ $$$$\int\frac{\mathrm{2}}{\left(\mathrm{1}+{sint}\right)}{dt} \\ $$$$\int\frac{\mathrm{2}\left(\mathrm{1}−{sint}\right)}{{cos}^{\mathrm{2}} {t}}{dt} \\ $$$$\mathrm{2}\int\left({sec}^{\mathrm{2}} {t}−{tant}.{sect}\right){dt} \\ $$$$\mathrm{2}{tant}−\mathrm{2}{sect}\:+\:{C} \\ $$$${next}\:{step}\:{can}\:{do}..... \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 04/Apr/20

I think you′ve mistakened something  somewhere.  It should be 1+sin^2 t instead of 1+sinx

$${I}\:{think}\:{you}'{ve}\:{mistakened}\:{something} \\ $$$${somewhere}. \\ $$$${It}\:{should}\:{be}\:\mathrm{1}+\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{t}}\:{instead}\:{of}\:\mathrm{1}+\boldsymbol{{sinx}} \\ $$

Answered by MJS last updated on 02/Apr/20

without trigonometric substitution:  ∫(dx/((1+x)(√(x−x^2 ))))=∫(dx/((1+x)(√(x(1−x)))))       [t=(√((1−x)/x)) → dx=−2(√(x^3 (1−x)))dt]  =−2∫(dt/(t^2 +2))=−(√2)arctan (t/(√3)) =  =−(√2)arctan (√((1−x)/(2x))) +C

$$\mathrm{without}\:\mathrm{trigonometric}\:\mathrm{substitution}: \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{{x}−{x}^{\mathrm{2}} }}=\int\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{{x}\left(\mathrm{1}−{x}\right)}} \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\frac{\mathrm{1}−{x}}{{x}}}\:\rightarrow\:{dx}=−\mathrm{2}\sqrt{{x}^{\mathrm{3}} \left(\mathrm{1}−{x}\right)}{dt}\right] \\ $$$$=−\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}}=−\sqrt{\mathrm{2}}\mathrm{arctan}\:\frac{{t}}{\sqrt{\mathrm{3}}}\:= \\ $$$$=−\sqrt{\mathrm{2}}\mathrm{arctan}\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{2}{x}}}\:+{C} \\ $$

Commented by john santu last updated on 03/Apr/20

super....sir

$$\mathrm{super}....\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com