Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129645 by liberty last updated on 17/Jan/21

    ϝ = ∫ (dx/(1+x^(12) )) .

$$\:\:\:\:\digamma\:=\:\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{12}} }\:. \\ $$

Answered by mathmax by abdo last updated on 17/Jan/21

roots of z^(12) +1=0   ⇒z^(12)  =e^(iπ +2ikπ)  =e^(i(2k+1)π)  ⇒z_k =e^(i((2k+1)π)/(12)))   withk∈[[0,11]]  and (1/(z^(12) +1))=(1/(Π_(k=0) ^(11) (z−z_k )))=Σ_(k=0) ^(11)  (a_k /(z−z_k ))  a_k =(1/(12z_k ^(11) )) =(z_k /(−12)) ⇒a_k =−(1/(12))Σ_(k=0) ^(11)  (z_k /(z−z_k )) ⇒  F=−(1/(12))Σ_(k=0) ^(11) z_k  ∫  (dx/(x−z_k )) =−(1/(12))Σ_(k=0) ^(11) z_k ln(x−z_k ) +C

$$\mathrm{roots}\:\mathrm{of}\:\mathrm{z}^{\mathrm{12}} +\mathrm{1}=\mathrm{0}\:\:\:\Rightarrow\mathrm{z}^{\mathrm{12}} \:=\mathrm{e}^{\mathrm{i}\pi\:+\mathrm{2ik}\pi} \:=\mathrm{e}^{\mathrm{i}\left(\mathrm{2k}+\mathrm{1}\right)\pi} \:\Rightarrow\mathrm{z}_{\mathrm{k}} =\mathrm{e}^{\mathrm{i}\frac{\left.\mathrm{2k}+\mathrm{1}\right)\pi}{\mathrm{12}}} \:\:\mathrm{withk}\in\left[\left[\mathrm{0},\mathrm{11}\right]\right] \\ $$$$\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{12}} +\mathrm{1}}=\frac{\mathrm{1}}{\prod_{\mathrm{k}=\mathrm{0}} ^{\mathrm{11}} \left(\mathrm{z}−\mathrm{z}_{\mathrm{k}} \right)}=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{11}} \:\frac{\mathrm{a}_{\mathrm{k}} }{\mathrm{z}−\mathrm{z}_{\mathrm{k}} } \\ $$$$\mathrm{a}_{\mathrm{k}} =\frac{\mathrm{1}}{\mathrm{12z}_{\mathrm{k}} ^{\mathrm{11}} }\:=\frac{\mathrm{z}_{\mathrm{k}} }{−\mathrm{12}}\:\Rightarrow\mathrm{a}_{\mathrm{k}} =−\frac{\mathrm{1}}{\mathrm{12}}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{11}} \:\frac{\mathrm{z}_{\mathrm{k}} }{\mathrm{z}−\mathrm{z}_{\mathrm{k}} }\:\Rightarrow \\ $$$$\mathrm{F}=−\frac{\mathrm{1}}{\mathrm{12}}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{11}} \mathrm{z}_{\mathrm{k}} \:\int\:\:\frac{\mathrm{dx}}{\mathrm{x}−\mathrm{z}_{\mathrm{k}} }\:=−\frac{\mathrm{1}}{\mathrm{12}}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{11}} \mathrm{z}_{\mathrm{k}} \mathrm{ln}\left(\mathrm{x}−\mathrm{z}_{\mathrm{k}} \right)\:+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com