Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167360 by LEKOUMA last updated on 14/Mar/22

∫(dx/(1+(√x)+(√(1+x))))

$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$

Answered by MJS_new last updated on 14/Mar/22

∫(dx/(1+(√x)+(√(x+1))))=       [t=(√x)+(√(x+1)) → dx=(((t−1)(t+1)(t^2 +1))/(2t^3 ))dt]  =(1/2)∫(((t−1)(t^2 +1))/t^3 )dt=  =(1/2)∫(1−(1/t)+(1/t^2 )−(1/t^3 ))dt=  =(t/2)−(1/2)ln t −(1/(2t))+(1/(4t^2 ))=  =((x+(2−(√(x+1)))(√x))/2)−(1/2)ln ((√x)+(√(x+1))) +C

$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\:\rightarrow\:{dx}=\frac{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{2}{t}^{\mathrm{3}} }{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{{t}^{\mathrm{3}} }{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\right){dt}= \\ $$$$=\frac{{t}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:{t}\:−\frac{\mathrm{1}}{\mathrm{2}{t}}+\frac{\mathrm{1}}{\mathrm{4}{t}^{\mathrm{2}} }= \\ $$$$=\frac{{x}+\left(\mathrm{2}−\sqrt{{x}+\mathrm{1}}\right)\sqrt{{x}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right)\:+{C} \\ $$

Commented by peter frank last updated on 14/Mar/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com