Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 177769 by a.lgnaoui last updated on 08/Oct/22

determiner les elements demandes  dans le graphe

$${determiner}\:{les}\:{elements}\:{demandes} \\ $$$${dans}\:{le}\:{graphe} \\ $$

Commented by a.lgnaoui last updated on 08/Oct/22

Commented by a.lgnaoui last updated on 09/Oct/22

∡ADB=180−(65+70)=45  ∡BDC=45    ⇒∡ADC=90  Donc   △ADC triangle rectangle  doonc  AC  passe par centre du cercle  AC=diametre   ACB  aussi triangle rectangle  donc  ∡DBC=90−70=20  Donc ∡ BCD=180−(45+20)=115

$$\measuredangle\mathrm{ADB}=\mathrm{180}−\left(\mathrm{65}+\mathrm{70}\right)=\mathrm{45} \\ $$$$\measuredangle\mathrm{BDC}=\mathrm{45}\:\:\:\:\Rightarrow\measuredangle\mathrm{ADC}=\mathrm{90} \\ $$$$\mathrm{Donc}\:\:\:\bigtriangleup\mathrm{ADC}\:\mathrm{triangle}\:\mathrm{rectangle} \\ $$$$\mathrm{doonc}\:\:\mathrm{AC}\:\:\mathrm{passe}\:\mathrm{par}\:\mathrm{centre}\:\mathrm{du}\:\mathrm{cercle} \\ $$$$\mathrm{AC}=\mathrm{diametre}\: \\ $$$$\mathrm{ACB}\:\:\mathrm{aussi}\:\mathrm{triangle}\:\mathrm{rectangle} \\ $$$$\mathrm{donc}\:\:\measuredangle\mathrm{DBC}=\mathrm{90}−\mathrm{70}=\mathrm{20} \\ $$$$\mathrm{Donc}\:\measuredangle\:\mathrm{BCD}=\mathrm{180}−\left(\mathrm{45}+\mathrm{20}\right)=\mathrm{115} \\ $$

Answered by Ar Brandon last updated on 08/Oct/22

ΔOAB ≡ ΔOCD   ⇒∠OCD=∠OBA=70°  ⇒∠OAB=∠ODC=45°  ⇒∠OAD=65°−∠OAB=20°  ⇒∠AOB=180°−70°−45°=65°  ⇒∠BOC=180°−∠AOB=115°  ΔOBC ≡ ΔOAD  ⇒∠OBC=∠OAD=20°  ⇒∠OCB=180°−∠BOC−∠OBC=45°  (i) ∠BCD=∠OCB+∠OCD=45°+70°=115°  (ii) ∠ADB=∠OCB=45°

$$\Delta\mathrm{OAB}\:\equiv\:\Delta\mathrm{OCD}\: \\ $$$$\Rightarrow\angle\mathrm{OCD}=\angle\mathrm{OBA}=\mathrm{70}° \\ $$$$\Rightarrow\angle\mathrm{OAB}=\angle\mathrm{ODC}=\mathrm{45}° \\ $$$$\Rightarrow\angle\mathrm{OAD}=\mathrm{65}°−\angle\mathrm{OAB}=\mathrm{20}° \\ $$$$\Rightarrow\angle\mathrm{AOB}=\mathrm{180}°−\mathrm{70}°−\mathrm{45}°=\mathrm{65}° \\ $$$$\Rightarrow\angle\mathrm{BOC}=\mathrm{180}°−\angle\mathrm{AOB}=\mathrm{115}° \\ $$$$\Delta\mathrm{OBC}\:\equiv\:\Delta\mathrm{OAD} \\ $$$$\Rightarrow\angle\mathrm{OBC}=\angle\mathrm{OAD}=\mathrm{20}° \\ $$$$\Rightarrow\angle\mathrm{OCB}=\mathrm{180}°−\angle\mathrm{BOC}−\angle\mathrm{OBC}=\mathrm{45}° \\ $$$$\left({i}\right)\:\angle\mathrm{BCD}=\angle\mathrm{OCB}+\angle\mathrm{OCD}=\mathrm{45}°+\mathrm{70}°=\mathrm{115}° \\ $$$$\left({ii}\right)\:\angle\mathrm{ADB}=\angle\mathrm{OCB}=\mathrm{45}° \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com