Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203774 by Calculusboy last updated on 27/Jan/24

determine whether the series is  convergent or divergent  𝚺_(n=1) ^∞ (n/( (√(4n^2 +1))))

$$\boldsymbol{{determine}}\:\boldsymbol{{whether}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{convergent}}\:\boldsymbol{{or}}\:\boldsymbol{{divergent}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\boldsymbol{{n}}}{\:\sqrt{\mathrm{4}\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Answered by witcher3 last updated on 27/Jan/24

(n/( (√(4n^2 +1))))β‰₯(n/( (√(1+4n^2 +4n))))=(n/(2n+1))=((3n)/(3(2n+1)))>((2n+1)/(3(2n+1)))  β‡’Ξ£(n/( (√(4n^2 +1))))>Ξ£(1/3) Dv

$$\frac{\mathrm{n}}{\:\sqrt{\mathrm{4n}^{\mathrm{2}} +\mathrm{1}}}\geqslant\frac{\mathrm{n}}{\:\sqrt{\mathrm{1}+\mathrm{4n}^{\mathrm{2}} +\mathrm{4n}}}=\frac{\mathrm{n}}{\mathrm{2n}+\mathrm{1}}=\frac{\mathrm{3n}}{\mathrm{3}\left(\mathrm{2n}+\mathrm{1}\right)}>\frac{\mathrm{2n}+\mathrm{1}}{\mathrm{3}\left(\mathrm{2n}+\mathrm{1}\right)} \\ $$$$\Rightarrow\Sigma\frac{\mathrm{n}}{\:\sqrt{\mathrm{4n}^{\mathrm{2}} +\mathrm{1}}}>\Sigma\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{Dv} \\ $$$$ \\ $$

Answered by Mathspace last updated on 30/Jan/24

(n/( (√(4n^2 +1))))=(n/(2n(√(1+(1/(4n^2 ))))))=(1/(2(√(1+(1/(4n^2 ))))))  we have (1+x)^Ξ± =1+Ξ±x +((Ξ±(Ξ±βˆ’1))/2)x^2 +o(x^2 )β‡’  (1/( (√(1+x))))=(1+x)^(βˆ’(1/2))   =1βˆ’(x/2)+(1/2)(βˆ’(1/2))(βˆ’(1/2)βˆ’1)x^2 +o(x^2 )  =1βˆ’(x/2)βˆ’(1/4)Γ—((βˆ’3)/2) x^2 +o(x^2 )  =1βˆ’(x/2)+(3/8)x^2 +o(x^2 )so  u_n =(1/( 2(√(1+(1/(4n^2 ))))))=(1/2)βˆ’(1/(16n^2 ))+(3/(16))Γ—(1/(16n^4 ))+o((1/n^4 ))  est un dev.assymtotique de  u_n     ona lim u_n =(1/2) β‰ 0 β‡’  Ξ£u_n  est divergente.

$$\frac{{n}}{\:\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}}=\frac{{n}}{\mathrm{2}{n}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}} \\ $$$${we}\:{have}\:\left(\mathrm{1}+{x}\right)^{\alpha} =\mathrm{1}+\alpha{x}\:+\frac{\alpha\left(\alphaβˆ’\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{2}} \right)\Rightarrow \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}=\left(\mathrm{1}+{x}\right)^{βˆ’\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\mathrm{1}βˆ’\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left(βˆ’\frac{\mathrm{1}}{\mathrm{2}}\right)\left(βˆ’\frac{\mathrm{1}}{\mathrm{2}}βˆ’\mathrm{1}\right){x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{1}βˆ’\frac{{x}}{\mathrm{2}}βˆ’\frac{\mathrm{1}}{\mathrm{4}}Γ—\frac{βˆ’\mathrm{3}}{\mathrm{2}}\:{x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{1}βˆ’\frac{{x}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{8}}{x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{2}} \right){so} \\ $$$${u}_{{n}} =\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}}=\frac{\mathrm{1}}{\mathrm{2}}βˆ’\frac{\mathrm{1}}{\mathrm{16}{n}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{16}}Γ—\frac{\mathrm{1}}{\mathrm{16}{n}^{\mathrm{4}} }+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right) \\ $$$${est}\:{un}\:{dev}.{assymtotique}\:{de} \\ $$$${u}_{{n}} \:\:\:\:{ona}\:{lim}\:{u}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\neq\mathrm{0}\:\Rightarrow \\ $$$$\Sigma{u}_{{n}} \:{est}\:{divergente}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com