Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 188083 by Kalebwizeman last updated on 25/Feb/23

determine the value of b for which      y=((−x)/3) +b  meets the graph of   y^2 =x^3   orthogonally

$${determine}\:{the}\:{value}\:{of}\:{b}\:{for}\:{which}\: \\ $$$$\:\:\:{y}=\frac{−{x}}{\mathrm{3}}\:+{b}\:\:{meets}\:{the}\:{graph}\:{of} \\ $$$$\:{y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:\:{orthogonally} \\ $$

Commented by a.lgnaoui last updated on 27/Feb/23

tan θ=(y/x)=(dy/dx)   y=x(dy/dx)   3=((b−(x/3)+(c/3))/x)     [(1)](meme tengente)   b−(x_0 /3)  =(√x_0 ^3 )       (2)(intersect)  (1)⇒((10)/3)x_0 =b+(c/3)          x_0 =((10)/3)b+((10c)/9)              b=((10)/3)x_0 −(c/3)     ⇒      b−(x_0 /3)=3x_0 −(c/3)=f(x_0 )  ou    3x_0 +(b−((10x_0 )/3))=tangente   1)−  b−(x_0 /3)+(c/3)=3x_0      2 )−   3x_0 −(c/3)=(√x_0 ^3 )   x^3 −9x^2 +2cx−((c/3))^2 =0  (a completer...)  A  suivre...................

$$\mathrm{tan}\:\theta=\frac{{y}}{{x}}=\frac{{dy}}{{dx}}\:\:\:{y}={x}\frac{{dy}}{{dx}} \\ $$$$\:\mathrm{3}=\frac{{b}−\frac{{x}}{\mathrm{3}}+\frac{{c}}{\mathrm{3}}}{{x}}\:\:\:\:\:\left[\left(\mathrm{1}\right)\right]\left({meme}\:{tengente}\right) \\ $$$$\:{b}−\frac{{x}_{\mathrm{0}} }{\mathrm{3}}\:\:=\sqrt{{x}_{\mathrm{0}} ^{\mathrm{3}} }\:\:\:\:\:\:\:\left(\mathrm{2}\right)\left({intersect}\right) \\ $$$$\left(\mathrm{1}\right)\Rightarrow\frac{\mathrm{10}}{\mathrm{3}}{x}_{\mathrm{0}} ={b}+\frac{{c}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{10}}{\mathrm{3}}{b}+\frac{\mathrm{10}{c}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{b}=\frac{\mathrm{10}}{\mathrm{3}}{x}_{\mathrm{0}} −\frac{{c}}{\mathrm{3}}\:\:\:\:\:\Rightarrow \\ $$$$\:\:\:\:{b}−\frac{{x}_{\mathrm{0}} }{\mathrm{3}}=\mathrm{3}{x}_{\mathrm{0}} −\frac{{c}}{\mathrm{3}}={f}\left({x}_{\mathrm{0}} \right) \\ $$$${ou}\:\:\:\:\mathrm{3}{x}_{\mathrm{0}} +\left({b}−\frac{\mathrm{10}{x}_{\mathrm{0}} }{\mathrm{3}}\right)={tangente} \\ $$$$\left.\:\mathrm{1}\right)−\:\:{b}−\frac{{x}_{\mathrm{0}} }{\mathrm{3}}+\frac{{c}}{\mathrm{3}}=\mathrm{3}{x}_{\mathrm{0}} \:\:\: \\ $$$$\left.\mathrm{2}\:\right)−\:\:\:\mathrm{3}{x}_{\mathrm{0}} −\frac{{c}}{\mathrm{3}}=\sqrt{{x}_{\mathrm{0}} ^{\mathrm{3}} }\: \\ $$$${x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +\mathrm{2}{cx}−\left(\frac{{c}}{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({a}\:{completer}...\right) \\ $$$${A}\:\:{suivre}................... \\ $$

Commented by a.lgnaoui last updated on 26/Feb/23

Commented by Kalebwizeman last updated on 26/Feb/23

thank you  what is now the value of b?

$${thank}\:{you} \\ $$$${what}\:{is}\:{now}\:{the}\:{value}\:{of}\:{b}? \\ $$

Answered by mr W last updated on 27/Feb/23

at intersection point:  2y(dy/dx)=3x^2   (dy/dx)=3  ⇒2y×3=3x^2   ⇒y=(x^2 /2)>0  on the other side  y^2 =x^3   ((x^2 /2))^2 =x^3   ⇒x=4  ⇒y=(4^2 /2)=8  8=−(4/3)+b  ⇒b=(4/3)+8=((28)/3) ✓

$${at}\:{intersection}\:{point}: \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{3} \\ $$$$\Rightarrow\mathrm{2}{y}×\mathrm{3}=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\Rightarrow{y}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}>\mathrm{0} \\ $$$${on}\:{the}\:{other}\:{side} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \\ $$$$\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} ={x}^{\mathrm{3}} \\ $$$$\Rightarrow{x}=\mathrm{4} \\ $$$$\Rightarrow{y}=\frac{\mathrm{4}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{8} \\ $$$$\mathrm{8}=−\frac{\mathrm{4}}{\mathrm{3}}+{b} \\ $$$$\Rightarrow{b}=\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{8}=\frac{\mathrm{28}}{\mathrm{3}}\:\checkmark \\ $$

Commented by mr W last updated on 27/Feb/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com