All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 99460 by mathmax by abdo last updated on 21/Jun/20
determineL(1−cosxx2)
Answered by mathmax by abdo last updated on 23/Jun/20
L(1−cosxx2)=∫0∞1−costt2e−xtdt=f(x)⇒f′(x)=−∫0∞(1−cost)e−xttdt⇒f(2)(x)=∫0∞(1−cost)e−xtdt=∫0∞e−xtdt−∫0∞e−xtcostdtbut∫0∞e−xtdt=[−1xe−xt]0∞=1xand∫0∞e−xtcostdt=Re(∫0∞e−xt+itdt)=Re(∫0∞e(−x+i)tdt)∫0∞e(−x+i)tdt=[1−x+ie(−x+i)t]0∞=−1−x+i=1x−i=x+ix2+1⇒Re(...)=xx2+1⇒f(2)(x)=1x−xx2+1⇒f′(x)=lnx−12ln(x2+1)+k⇒f(x)=∫ln(x)dx−12∫ln(x2+1)dx+kx+cwehave∫ln(x)dx=xln(x)−x∫ln(x2+1)dx=xln(x2+1)−∫x×2x1+x2dx=xln(x2+1)−2∫x2+1−11+x2dx=xln(1+x2)−2x+2arctanx⇒f(x)=xlnx−x−x2ln(1+x2)+x−arctanx+kx+cc=limx→0f(x)=∫0∞1−costt2=2∫0∞sin2tt2dt=2{[−sin2tt]0∞+∫0∞2sintcosttdt}=2∫0∞sin(2t)tdt=2t=u2∫0∞sinuu2×du2=2∫0∞sinuudu=π⇒c=πresttofindk....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com