Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67672 by Abdo msup. last updated on 30/Aug/19

decompose the folowing  fraction at R(x)  1)F(x)=(x^3 /(1−x^6 ))  2) G(x) =((x^2 +1)/(x^3 (x^2 +x+1)^2 ))

$${decompose}\:{the}\:{folowing}\:\:{fraction}\:{at}\:{R}\left({x}\right) \\ $$$$\left.\mathrm{1}\right){F}\left({x}\right)=\frac{{x}^{\mathrm{3}} }{\mathrm{1}−{x}^{\mathrm{6}} } \\ $$$$\left.\mathrm{2}\right)\:{G}\left({x}\right)\:=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by Abdo msup. last updated on 30/Aug/19

1)F(x) =−(x^3 /((x^3 )^2 −1)) =−(x^3 /((x^3 −1)(x^3  +1)))  =((−x^3 )/((x−1)(x^2 +x+1)(x+1)(x^2 −x+1)))  =(a/(x−1)) +(b/(x+1)) +((cx +d)/(x^2  +x+1)) +((ex +f)/(x^2 −x +1))  a =lim_(x→1) (x−1)F(x) =−(1/(3.2.1)) =−(1/6)  b =lim_(x→−1) (x+1)F(x)=(1/((−2).3))=−(1/6) ⇒  F(x)=((−1)/(6(x−1)))−(1/(6(x+1))) +((cx+d)/(x^2  +x+1)) +((ex +f)/(x^2 −x+1))  F(−x) =−F(x) ⇒  (1/(6(x+1))) +(1/(6(x−1))) +((−cx+d)/(x^2 −x +1)) +((−ex +f)/(x^2  +x+1))  =(1/(6(x−1))) +(1/(6(x+1))) +((−cx −d)/(x^2  +x+1)) +((−ex−f)/(x^2 −x +1)) ⇒  ⇒ f=−d...

$$\left.\mathrm{1}\right){F}\left({x}\right)\:=−\frac{{x}^{\mathrm{3}} }{\left({x}^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{1}}\:=−\frac{{x}^{\mathrm{3}} }{\left({x}^{\mathrm{3}} −\mathrm{1}\right)\left({x}^{\mathrm{3}} \:+\mathrm{1}\right)} \\ $$$$=\frac{−{x}^{\mathrm{3}} }{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)} \\ $$$$=\frac{{a}}{{x}−\mathrm{1}}\:+\frac{{b}}{{x}+\mathrm{1}}\:+\frac{{cx}\:+{d}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:+\frac{{ex}\:+{f}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}} \\ $$$${a}\:={lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right){F}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{2}.\mathrm{1}}\:=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${b}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right){F}\left({x}\right)=\frac{\mathrm{1}}{\left(−\mathrm{2}\right).\mathrm{3}}=−\frac{\mathrm{1}}{\mathrm{6}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{−\mathrm{1}}{\mathrm{6}\left({x}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:+\frac{{ex}\:+{f}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$${F}\left(−{x}\right)\:=−{F}\left({x}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\mathrm{6}\left({x}−\mathrm{1}\right)}\:+\frac{−{cx}+{d}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}\:+\frac{−{ex}\:+{f}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}\left({x}−\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{−{cx}\:−{d}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:+\frac{−{ex}−{f}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}\:\Rightarrow \\ $$$$\Rightarrow\:{f}=−{d}... \\ $$$$ \\ $$$$ \\ $$

Commented by Abdo msup. last updated on 30/Aug/19

⇒ F(x) =−(1/(6(x−1)))−(1/(6(x+1))) +((cx +d)/(x^2  +x+1)) +((ex−d)/(x^2 −x+1))  lim_(x→+∞) xF(x) =0 =−(1/3) +c+e ⇒e =(1/3)−c ⇒  F(x) =−(1/(6(x−1)))−(1/(6(x+1))) +((cx+d)/(x^2  +x+1)) +((((1/3)−c)x−d)/(x^2  −x +1))  to detrmine c and d  we?can calculate F(2) and  F(−2)...be?vontinued...

$$\Rightarrow\:{F}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{6}\left({x}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{{cx}\:+{d}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:+\frac{{ex}−{d}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)\:=\mathrm{0}\:=−\frac{\mathrm{1}}{\mathrm{3}}\:+{c}+{e}\:\Rightarrow{e}\:=\frac{\mathrm{1}}{\mathrm{3}}−{c}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{6}\left({x}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:+\frac{\left(\frac{\mathrm{1}}{\mathrm{3}}−{c}\right){x}−{d}}{{x}^{\mathrm{2}} \:−{x}\:+\mathrm{1}} \\ $$$${to}\:{detrmine}\:{c}\:{and}\:{d}\:\:{we}?{can}\:{calculate}\:{F}\left(\mathrm{2}\right)\:{and} \\ $$$${F}\left(−\mathrm{2}\right)...{be}?{vontinued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com