Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 183210 by Mastermind last updated on 23/Dec/22

(d^3 y/dx^3 )+4(d^2 y/dx^2 )+(dy/dx)−6y=0      M.m

$$\frac{\mathrm{d}^{\mathrm{3}} \mathrm{y}}{\mathrm{dx}^{\mathrm{3}} }+\mathrm{4}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{6y}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by aleks041103 last updated on 23/Dec/22

y=e^(rx) ⇒(r^3 +4r^2 +r−6)y=0  ⇒r^3 +4r^2 +r−6=0  r^3 −r^2 +5r^2 −5r+6r−6=0  r^2 (r−1)+5r(r−1)+6(r−1)=0  ⇒(r−1)(r^2 +5r+6)=0  (r−1)(r^2 +2r+3r+6)=0  (r−1)(r(r+2)+3(r+2))=0  (r−1)(r+2)(r+3)=0  ⇒r=−3,−2,1  ⇒y(x)=Ae^(−3x) +Be^(−2x) +Ce^x

$${y}={e}^{{rx}} \Rightarrow\left({r}^{\mathrm{3}} +\mathrm{4}{r}^{\mathrm{2}} +{r}−\mathrm{6}\right){y}=\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{3}} +\mathrm{4}{r}^{\mathrm{2}} +{r}−\mathrm{6}=\mathrm{0} \\ $$$${r}^{\mathrm{3}} −{r}^{\mathrm{2}} +\mathrm{5}{r}^{\mathrm{2}} −\mathrm{5}{r}+\mathrm{6}{r}−\mathrm{6}=\mathrm{0} \\ $$$${r}^{\mathrm{2}} \left({r}−\mathrm{1}\right)+\mathrm{5}{r}\left({r}−\mathrm{1}\right)+\mathrm{6}\left({r}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +\mathrm{5}{r}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +\mathrm{2}{r}+\mathrm{3}{r}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}\left({r}+\mathrm{2}\right)+\mathrm{3}\left({r}+\mathrm{2}\right)\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}+\mathrm{2}\right)\left({r}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{r}=−\mathrm{3},−\mathrm{2},\mathrm{1} \\ $$$$\Rightarrow{y}\left({x}\right)={Ae}^{−\mathrm{3}{x}} +{Be}^{−\mathrm{2}{x}} +{Ce}^{{x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com