Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 175406 by princeDera last updated on 29/Aug/22

(d^2 y/dx^2 ) −tan (x)(dy/dx) = 0

$$\frac{{d}^{\mathrm{2}} \boldsymbol{{y}}}{\boldsymbol{{dx}}^{\mathrm{2}} }\:−\mathrm{tan}\:\left(\boldsymbol{{x}}\right)\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\:=\:\mathrm{0} \\ $$

Answered by Ar Brandon last updated on 29/Aug/22

y′′−tanx∙y′=0  ⇒((y′′)/(y′))=tanx  ⇒ln(y′)=−ln(cosx)+C  ⇒(dy/dx)=(1/(cosx))e^C =(k/(cosx))  ⇒y=∫ksecxdx=kln∣secx+tanx)+k_2

$${y}''−\mathrm{tan}{x}\centerdot{y}'=\mathrm{0} \\ $$$$\Rightarrow\frac{{y}''}{{y}'}=\mathrm{tan}{x} \\ $$$$\Rightarrow\mathrm{ln}\left({y}'\right)=−\mathrm{ln}\left(\mathrm{cos}{x}\right)+{C} \\ $$$$\Rightarrow\frac{{d}\mathrm{y}}{{dx}}=\frac{\mathrm{1}}{\mathrm{cos}{x}}{e}^{{C}} =\frac{{k}}{\mathrm{cos}{x}} \\ $$$$\left.\Rightarrow\mathrm{y}=\int{k}\mathrm{sec}{xdx}={k}\mathrm{ln}\mid\mathrm{sec}{x}+\mathrm{tan}{x}\right)+{k}_{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com