Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 115298 by Dwaipayan Shikari last updated on 24/Sep/20

(d^2 y/dx^2 )+log(y)=0

$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{log}\left(\mathrm{y}\right)=\mathrm{0} \\ $$

Commented by mohammad17 last updated on 25/Sep/20

y^(′′) +lny=0⇒y^(′′) =−lny    ∫d(y^′ )=−∫lnydy    y^′ =−ylny+y+C_1     ∫d(y)=∫(C_1 +y−ylny)dy    y=C_1 y+(1/2)y^2 −(1/2)y^2 lny+(1/4)y^2 +C_2     y=(3/4)y^2 −(1/2)y^2 lny+C_1 y+C_2     y=y^2 (((3−2lny)/4))+C_1 y+C_2     ⟨m.t⟩

$${y}^{''} +{lny}=\mathrm{0}\Rightarrow{y}^{''} =−{lny} \\ $$$$ \\ $$$$\int{d}\left({y}^{'} \right)=−\int{lnydy} \\ $$$$ \\ $$$${y}^{'} =−{ylny}+{y}+{C}_{\mathrm{1}} \\ $$$$ \\ $$$$\int{d}\left({y}\right)=\int\left({C}_{\mathrm{1}} +{y}−{ylny}\right){dy} \\ $$$$ \\ $$$${y}={C}_{\mathrm{1}} {y}+\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} {lny}+\frac{\mathrm{1}}{\mathrm{4}}{y}^{\mathrm{2}} +{C}_{\mathrm{2}} \\ $$$$ \\ $$$${y}=\frac{\mathrm{3}}{\mathrm{4}}{y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} {lny}+{C}_{\mathrm{1}} {y}+{C}_{\mathrm{2}} \\ $$$$ \\ $$$${y}={y}^{\mathrm{2}} \left(\frac{\mathrm{3}−\mathrm{2}{lny}}{\mathrm{4}}\right)+{C}_{\mathrm{1}} {y}+{C}_{\mathrm{2}} \\ $$$$ \\ $$$$\langle{m}.{t}\rangle \\ $$

Commented by Olaf last updated on 26/Sep/20

sorry mister.  ∫d(y′) = −∫lnydx ....!  and not −∫lnydy  And as you can see,  if you derivate your final result  to verify the initial equation  unafornately it′s wrong.

$${sorry}\:{mister}. \\ $$$$\int{d}\left({y}'\right)\:=\:−\int{lnydx}\:....! \\ $$$${and}\:{not}\:−\int{lnydy} \\ $$$${And}\:{as}\:{you}\:{can}\:{see}, \\ $$$${if}\:{you}\:{derivate}\:{your}\:{final}\:{result} \\ $$$${to}\:{verify}\:{the}\:{initial}\:{equation} \\ $$$${unafornately}\:{it}'{s}\:{wrong}. \\ $$

Answered by Olaf last updated on 24/Sep/20

y′′+lny = 0  y′′y′+y′lny = 0  ∫y′′y′dx+∫y′lnydx = 0  (1/2)y′^2 +ylny−∫y((y′)/y) = C_1   (1/2)y′^2 +ylny−y = C_1   y′^2  = 2y(1−lny)+ C_2   ((y′)/( (√(2y(1−lny)+C_2 )))) = 1  ∫((y′)/( (√(2y(1−lny)+C_2 ))))dx = x+C_3

$${y}''+\mathrm{ln}{y}\:=\:\mathrm{0} \\ $$$${y}''{y}'+{y}'\mathrm{ln}{y}\:=\:\mathrm{0} \\ $$$$\int{y}''{y}'{dx}+\int{y}'\mathrm{ln}{ydx}\:=\:\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{y}'^{\mathrm{2}} +{y}\mathrm{ln}{y}−\int{y}\frac{{y}'}{{y}}\:=\:\mathrm{C}_{\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{y}'^{\mathrm{2}} +{y}\mathrm{ln}{y}−{y}\:=\:\mathrm{C}_{\mathrm{1}} \\ $$$${y}'^{\mathrm{2}} \:=\:\mathrm{2}{y}\left(\mathrm{1}−\mathrm{ln}{y}\right)+\:\mathrm{C}_{\mathrm{2}} \\ $$$$\frac{{y}'}{\:\sqrt{\mathrm{2}{y}\left(\mathrm{1}−\mathrm{ln}{y}\right)+\mathrm{C}_{\mathrm{2}} }}\:=\:\mathrm{1} \\ $$$$\int\frac{{y}'}{\:\sqrt{\mathrm{2}{y}\left(\mathrm{1}−\mathrm{ln}{y}\right)+\mathrm{C}_{\mathrm{2}} }}{dx}\:=\:{x}+\mathrm{C}_{\mathrm{3}} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 25/Sep/20

Is there any definite solution?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{definite}\:\mathrm{solution}? \\ $$

Commented by Olaf last updated on 26/Sep/20

no sir.  only approximate solutions

$${no}\:{sir}. \\ $$$${only}\:{approximate}\:{solutions} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com