Previous in Differential Equation Next in Differential Equation | ||
Question Number 73495 by ajfour last updated on 13/Nov/19 | ||
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={c}^{\mathrm{2}} {x}^{\mathrm{2}} {y}\:\:\:\:\:\left({y}={a}\:,\:{x}=\mathrm{0}\:\right) \\ $$ | ||
Answered by mind is power last updated on 13/Nov/19 | ||
$${t}={x}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{dt}}.\frac{{dt}}{{dx}}=\mathrm{2}{x}\frac{{dy}}{{dt}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{2}\frac{{dy}}{{dt}}+\mathrm{2}{x}.\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }.\frac{{dt}}{{dx}}=\mathrm{2}\frac{{dy}}{{dt}}+\mathrm{4}{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\mathrm{4}{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\mathrm{2}\frac{{dy}}{{dt}}={c}^{\mathrm{2}} {x}^{\mathrm{2}} {y} \\ $$$$\Leftrightarrow\mathrm{4}{t}\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\mathrm{2}\frac{{dy}}{{dt}}−{c}^{\mathrm{2}} {ty}\left({t}\right)=\mathrm{0} \\ $$$$\Leftrightarrow{t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}{t}\frac{{dy}}{{dt}}−\frac{{c}^{\mathrm{2}} }{\mathrm{4}}{t}^{\mathrm{2}} {y}\left({t}\right)=\mathrm{0} \\ $$$${Bessel}\:{generalise}\:{Equation} \\ $$$${is}\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\left(\mathrm{2}{p}+\mathrm{1}\right){x}\frac{{dy}}{{dx}}+\left({a}^{\mathrm{2}} {x}^{\mathrm{2}{r}} +\beta^{\mathrm{2}} \right){y}=\mathrm{0} \\ $$$${solution}\:{is}\:{y}={x}^{−{p}} \left[{C}_{\mathrm{1}} {J}_{{q}/{r}\:} \left(\frac{{ax}^{{r}} }{{r}}\right)+{C}_{\mathrm{2}} {Y}_{{q}/{r}} \left(\frac{\alpha}{{r}}{x}^{{r}} \right)\right] \\ $$$${q}=\sqrt{{p}^{\mathrm{2}} −\beta^{\mathrm{2}} } \\ $$$${in}\:{our}\:{case}\:{r}=\mathrm{1} \\ $$$${a}=\left(\frac{{ci}}{\mathrm{2}}\right) \\ $$$${p}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${q}=\sqrt{\frac{\mathrm{1}}{\mathrm{16}}−\mathrm{0}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${y}={t}^{\frac{\mathrm{1}}{\mathrm{4}}} \left[{C}_{\mathrm{1}} {J}_{\frac{\mathrm{1}}{\mathrm{4}}} \left(\frac{{ci}}{\mathrm{2}}{t}\right)+{C}_{\mathrm{2}} {Y}_{\frac{\mathrm{1}}{\mathrm{4}}} \left(\frac{{cit}}{\mathrm{2}}\right)\right] \\ $$$${J}\:\:{first}\:{bassel}\:{function},{Y}\:\:\mathrm{2}{nd}\:{espace}\:{of}\:{bassel}\:{equation} \\ $$$${y}\left({x}\right)={Y}\left({t}\right)\mid_{{t}=\sqrt{{x}}} \\ $$ | ||
Commented by ajfour last updated on 13/Nov/19 | ||
$${Thanks}\:'{Powerful}\:{Mind}'\:,\:{i}'{ll} \\ $$$${look}\:{into}\:'{Erwin}\:{Kreyszig}' \\ $$$$\left({higher}\:{engg}.\:{maths}\:{book}\right)\:{and} \\ $$$${try}\:{to}\:{understand}\:{your}\:{sol}^{{n}} .. \\ $$ | ||
Commented by mind is power last updated on 13/Nov/19 | ||
$${y}'{re}\:{Welcom}\:\:\:{i}\:{had}\:{a}\:{pdf}\:{of}\:\:{differential}\:{equation} \\ $$$${if}\:{i}\:{find}\:{it}\:{i}\:{tell}\:{you}\:{the}\:{Names} \\ $$ | ||