Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 73495 by ajfour last updated on 13/Nov/19

(d^2 y/dx^2 )=c^2 x^2 y     (y=a , x=0 )

$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={c}^{\mathrm{2}} {x}^{\mathrm{2}} {y}\:\:\:\:\:\left({y}={a}\:,\:{x}=\mathrm{0}\:\right) \\ $$

Answered by mind is power last updated on 13/Nov/19

t=x^2   (dy/dx)=(dy/dt).(dt/dx)=2x(dy/dt)  (d^2 y/dx^2 )=2(dy/dt)+2x.(d^2 y/dt^2 ).(dt/dx)=2(dy/dt)+4x^2 (d^2 y/dt^2 )  ⇔4x^2 (d^2 y/dt^2 )+2(dy/dt)=c^2 x^2 y  ⇔4t(d^2 y/dt^2 )+2(dy/dt)−c^2 ty(t)=0  ⇔t^2 (d^2 y/dt^2 )+(1/2)t(dy/dt)−(c^2 /4)t^2 y(t)=0  Bessel generalise Equation  is x^2 (d^2 y/dx^2 )+(2p+1)x(dy/dx)+(a^2 x^(2r) +β^2 )y=0  solution is y=x^(−p) [C_1 J_(q/r ) (((ax^r )/r))+C_2 Y_(q/r) ((α/r)x^r )]  q=(√(p^2 −β^2 ))  in our case r=1  a=(((ci)/2))  p=−(1/4)  q=(√((1/(16))−0))=(1/4)  y=t^(1/4) [C_1 J_(1/4) (((ci)/2)t)+C_2 Y_(1/4) (((cit)/2))]  J  first bassel function,Y  2nd espace of bassel equation  y(x)=Y(t)∣_(t=(√x))

$${t}={x}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{dt}}.\frac{{dt}}{{dx}}=\mathrm{2}{x}\frac{{dy}}{{dt}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{2}\frac{{dy}}{{dt}}+\mathrm{2}{x}.\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }.\frac{{dt}}{{dx}}=\mathrm{2}\frac{{dy}}{{dt}}+\mathrm{4}{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\mathrm{4}{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\mathrm{2}\frac{{dy}}{{dt}}={c}^{\mathrm{2}} {x}^{\mathrm{2}} {y} \\ $$$$\Leftrightarrow\mathrm{4}{t}\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\mathrm{2}\frac{{dy}}{{dt}}−{c}^{\mathrm{2}} {ty}\left({t}\right)=\mathrm{0} \\ $$$$\Leftrightarrow{t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}{t}\frac{{dy}}{{dt}}−\frac{{c}^{\mathrm{2}} }{\mathrm{4}}{t}^{\mathrm{2}} {y}\left({t}\right)=\mathrm{0} \\ $$$${Bessel}\:{generalise}\:{Equation} \\ $$$${is}\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\left(\mathrm{2}{p}+\mathrm{1}\right){x}\frac{{dy}}{{dx}}+\left({a}^{\mathrm{2}} {x}^{\mathrm{2}{r}} +\beta^{\mathrm{2}} \right){y}=\mathrm{0} \\ $$$${solution}\:{is}\:{y}={x}^{−{p}} \left[{C}_{\mathrm{1}} {J}_{{q}/{r}\:} \left(\frac{{ax}^{{r}} }{{r}}\right)+{C}_{\mathrm{2}} {Y}_{{q}/{r}} \left(\frac{\alpha}{{r}}{x}^{{r}} \right)\right] \\ $$$${q}=\sqrt{{p}^{\mathrm{2}} −\beta^{\mathrm{2}} } \\ $$$${in}\:{our}\:{case}\:{r}=\mathrm{1} \\ $$$${a}=\left(\frac{{ci}}{\mathrm{2}}\right) \\ $$$${p}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${q}=\sqrt{\frac{\mathrm{1}}{\mathrm{16}}−\mathrm{0}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${y}={t}^{\frac{\mathrm{1}}{\mathrm{4}}} \left[{C}_{\mathrm{1}} {J}_{\frac{\mathrm{1}}{\mathrm{4}}} \left(\frac{{ci}}{\mathrm{2}}{t}\right)+{C}_{\mathrm{2}} {Y}_{\frac{\mathrm{1}}{\mathrm{4}}} \left(\frac{{cit}}{\mathrm{2}}\right)\right] \\ $$$${J}\:\:{first}\:{bassel}\:{function},{Y}\:\:\mathrm{2}{nd}\:{espace}\:{of}\:{bassel}\:{equation} \\ $$$${y}\left({x}\right)={Y}\left({t}\right)\mid_{{t}=\sqrt{{x}}} \\ $$

Commented by ajfour last updated on 13/Nov/19

Thanks ′Powerful Mind′ , i′ll  look into ′Erwin Kreyszig′  (higher engg. maths book) and  try to understand your sol^n ..

$${Thanks}\:'{Powerful}\:{Mind}'\:,\:{i}'{ll} \\ $$$${look}\:{into}\:'{Erwin}\:{Kreyszig}' \\ $$$$\left({higher}\:{engg}.\:{maths}\:{book}\right)\:{and} \\ $$$${try}\:{to}\:{understand}\:{your}\:{sol}^{{n}} .. \\ $$

Commented by mind is power last updated on 13/Nov/19

y′re Welcom   i had a pdf of  differential equation  if i find it i tell you the Names

$${y}'{re}\:{Welcom}\:\:\:{i}\:{had}\:{a}\:{pdf}\:{of}\:\:{differential}\:{equation} \\ $$$${if}\:{i}\:{find}\:{it}\:{i}\:{tell}\:{you}\:{the}\:{Names} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com