Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 47035 by 23kpratik last updated on 04/Nov/18

(d^2 +a^2 )y=tan ax by the method of variation of parameters

$$\left({d}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){y}={tan}\:{ax}\:{by}\:{the}\:{method}\:{of}\:{variation}\:{of}\:{parameters} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18

pls clarify  d means (d/dx) is it...

$${pls}\:{clarify}\:\:{d}\:{means}\:\frac{{d}}{{dx}}\:{is}\:{it}... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18

y=(1/(D^2 +a^2 ))tanax  =(1/(D^2 +a^2 ))×((2isinax)/(i×2cosax))  =(1/(D^2 +a^2 ))×((e^(iax) −e^(−iax) )/(i×(e^(iax) +e^(−iax) )))  e^(iax) =cosax+isinax  e^(−iax) =cosax−isinax  y=(1/((D+ia)(D−ia)))×(1/i)×((e^(i2ax) −1)/(e^(i2ax) +1))  =wait...

$${y}=\frac{\mathrm{1}}{{D}^{\mathrm{2}} +{a}^{\mathrm{2}} }{tanax} \\ $$$$=\frac{\mathrm{1}}{{D}^{\mathrm{2}} +{a}^{\mathrm{2}} }×\frac{\mathrm{2}{isinax}}{{i}×\mathrm{2}{cosax}} \\ $$$$=\frac{\mathrm{1}}{{D}^{\mathrm{2}} +{a}^{\mathrm{2}} }×\frac{{e}^{{iax}} −{e}^{−{iax}} }{{i}×\left({e}^{{iax}} +{e}^{−{iax}} \right)} \\ $$$${e}^{{iax}} ={cosax}+{isinax} \\ $$$${e}^{−{iax}} ={cosax}−{isinax} \\ $$$${y}=\frac{\mathrm{1}}{\left({D}+{ia}\right)\left({D}−{ia}\right)}×\frac{\mathrm{1}}{{i}}×\frac{{e}^{{i}\mathrm{2}{ax}} −\mathrm{1}}{{e}^{{i}\mathrm{2}{ax}} +\mathrm{1}} \\ $$$$={wait}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com