Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 89047 by jagoll last updated on 15/Apr/20

cos x+sin x=(4/5)  5sin x = ?

$$\mathrm{cos}\:{x}+\mathrm{sin}\:{x}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\mathrm{5sin}\:{x}\:=\:? \\ $$

Commented by john santu last updated on 15/Apr/20

± (√(1−sin^2 x)) = (4/5)−sin x  1−sin^2 x = ((16)/(25)) −(8/5)sin x +sin^2 x  2sin^2 x−(8/5)sin x−(9/(25)) = 0  ⇒sin x = ((((8/5)−((4(√(34)))/5)))/4)  5 sin x = 2−(√(34)) ≈ −3.831

$$\pm\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}}\:=\:\frac{\mathrm{4}}{\mathrm{5}}−\mathrm{sin}\:{x} \\ $$$$\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\:=\:\frac{\mathrm{16}}{\mathrm{25}}\:−\frac{\mathrm{8}}{\mathrm{5}}\mathrm{sin}\:{x}\:+\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{2sin}\:^{\mathrm{2}} {x}−\frac{\mathrm{8}}{\mathrm{5}}\mathrm{sin}\:{x}−\frac{\mathrm{9}}{\mathrm{25}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:{x}\:=\:\frac{\left(\frac{\mathrm{8}}{\mathrm{5}}−\frac{\mathrm{4}\sqrt{\mathrm{34}}}{\mathrm{5}}\right)}{\mathrm{4}} \\ $$$$\mathrm{5}\:\mathrm{sin}\:{x}\:=\:\mathrm{2}−\sqrt{\mathrm{34}}\:\approx\:−\mathrm{3}.\mathrm{831} \\ $$

Answered by MJS last updated on 15/Apr/20

t=tan (x/2) ⇔ x=2arctan t  ((1−t^2 )/(t^2 +1))+((2t)/(t^2 +1))=(4/5)  −5t^2 +10t+5=4t^2 +4  t^2 −((10)/9)t−(1/9)=0  t=(5/9)±((√(34))/9)  ⇒ 5sin x =((10t)/(t^2 +1))=2±((√(34))/2)

$${t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Leftrightarrow\:{x}=\mathrm{2arctan}\:{t} \\ $$$$\frac{\mathrm{1}−{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$−\mathrm{5}{t}^{\mathrm{2}} +\mathrm{10}{t}+\mathrm{5}=\mathrm{4}{t}^{\mathrm{2}} +\mathrm{4} \\ $$$${t}^{\mathrm{2}} −\frac{\mathrm{10}}{\mathrm{9}}{t}−\frac{\mathrm{1}}{\mathrm{9}}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{5}}{\mathrm{9}}\pm\frac{\sqrt{\mathrm{34}}}{\mathrm{9}} \\ $$$$\Rightarrow\:\mathrm{5sin}\:{x}\:=\frac{\mathrm{10}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}=\mathrm{2}\pm\frac{\sqrt{\mathrm{34}}}{\mathrm{2}} \\ $$

Commented by john santu last updated on 15/Apr/20

t^2  = ((59 ± 10(√(34)))/(81)) ⇒ t^2 +1 = ((140 ±10(√(34)))/(81))  10t = ((50±10(√(34)))/9)  ((10t)/(t^2 +1)) = ((50±10(√(34)))/9) ×((81)/(140±10(√(34))))  = (((5±(√(34)))×9)/(14±(√(34)))) ?

$${t}^{\mathrm{2}} \:=\:\frac{\mathrm{59}\:\pm\:\mathrm{10}\sqrt{\mathrm{34}}}{\mathrm{81}}\:\Rightarrow\:{t}^{\mathrm{2}} +\mathrm{1}\:=\:\frac{\mathrm{140}\:\pm\mathrm{10}\sqrt{\mathrm{34}}}{\mathrm{81}} \\ $$$$\mathrm{10}{t}\:=\:\frac{\mathrm{50}\pm\mathrm{10}\sqrt{\mathrm{34}}}{\mathrm{9}} \\ $$$$\frac{\mathrm{10}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\:=\:\frac{\mathrm{50}\pm\mathrm{10}\sqrt{\mathrm{34}}}{\mathrm{9}}\:×\frac{\mathrm{81}}{\mathrm{140}\pm\mathrm{10}\sqrt{\mathrm{34}}} \\ $$$$=\:\frac{\left(\mathrm{5}\pm\sqrt{\mathrm{34}}\right)×\mathrm{9}}{\mathrm{14}\pm\sqrt{\mathrm{34}}}\:?\: \\ $$

Commented by MJS last updated on 15/Apr/20

=9(((5±(√(34)))(14∓(√(34))))/((14±(√(34)))(14∓(√(34)))))=9((36±9(√(34)))/(162))=2±((√(34))/2)

$$=\mathrm{9}\frac{\left(\mathrm{5}\pm\sqrt{\mathrm{34}}\right)\left(\mathrm{14}\mp\sqrt{\mathrm{34}}\right)}{\left(\mathrm{14}\pm\sqrt{\mathrm{34}}\right)\left(\mathrm{14}\mp\sqrt{\mathrm{34}}\right)}=\mathrm{9}\frac{\mathrm{36}\pm\mathrm{9}\sqrt{\mathrm{34}}}{\mathrm{162}}=\mathrm{2}\pm\frac{\sqrt{\mathrm{34}}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 15/Apr/20

what the correct answer?  i see has 2 answer

$${what}\:{the}\:{correct}\:{answer}? \\ $$$${i}\:{see}\:{has}\:\mathrm{2}\:{answer}\: \\ $$

Commented by MJS last updated on 15/Apr/20

sin x +cos x =(4/5) has 2 solutions in [0; 2π[  ⇒ 2 correct answers

$$\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:=\frac{\mathrm{4}}{\mathrm{5}}\:\mathrm{has}\:\mathrm{2}\:\mathrm{solutions}\:\mathrm{in}\:\left[\mathrm{0};\:\mathrm{2}\pi\left[\right.\right. \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{correct}\:\mathrm{answers} \\ $$

Commented by jagoll last updated on 15/Apr/20

o. thanks very much sir.

$${o}.\:{thanks}\:{very}\:{much}\:{sir}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com