Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 89193 by jagoll last updated on 16/Apr/20

cos x−sin x =(1/2)  cos x sin x = (3/8) , π < x < 2π  cos x + sin x =?

$$\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}\:=\:\frac{\mathrm{3}}{\mathrm{8}}\:,\:\pi\:<\:{x}\:<\:\mathrm{2}\pi \\ $$$$\mathrm{cos}\:{x}\:+\:\mathrm{sin}\:{x}\:=? \\ $$

Commented by Tony Lin last updated on 16/Apr/20

∵π<x<2π  ∴sinx<0  ∵cosxsinx=(3/8)  ∴cosx<0  (cosx+sinx)^2 =(cosx−sinx)^2 +4cosxsinx                              =(1/4)+(3/2)=(7/4)  ⇒cosx+sinx=−((√7)/2)   { ((cosx+sinx=−((√7)/2))),((cosx−sinx=(1/2))) :}  ⇒ { ((sinx=((−(√7)−1)/4))),((cosx=((−(√7)+1)/4))) :}

$$\because\pi<{x}<\mathrm{2}\pi \\ $$$$\therefore{sinx}<\mathrm{0} \\ $$$$\because{cosxsinx}=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\therefore{cosx}<\mathrm{0} \\ $$$$\left({cosx}+{sinx}\right)^{\mathrm{2}} =\left({cosx}−{sinx}\right)^{\mathrm{2}} +\mathrm{4}{cosxsinx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$\Rightarrow{cosx}+{sinx}=−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\begin{cases}{{cosx}+{sinx}=−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}}\\{{cosx}−{sinx}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{{sinx}=\frac{−\sqrt{\mathrm{7}}−\mathrm{1}}{\mathrm{4}}}\\{{cosx}=\frac{−\sqrt{\mathrm{7}}+\mathrm{1}}{\mathrm{4}}}\end{cases} \\ $$

Commented by john santu last updated on 16/Apr/20

let cos x+sin x = p, p < 0  (1/2)p = cos 2x   (i)  (ii) 2sin xcos x = (3/4)⇒sin 2x=(3/4)  cos 2x = −((√7)/4)  ∴ (1/2)p = −((√7)/4) ⇒p = −((√7)/2)  cos x+sin x = −((√7)/2)

$${let}\:\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\:=\:{p},\:{p}\:<\:\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{p}\:=\:\mathrm{cos}\:\mathrm{2}{x}\:\:\:\left({i}\right) \\ $$$$\left({ii}\right)\:\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\Rightarrow\mathrm{sin}\:\mathrm{2}{x}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}\:=\:−\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$$\therefore\:\frac{\mathrm{1}}{\mathrm{2}}{p}\:=\:−\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\:\Rightarrow{p}\:=\:−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\:=\:−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 16/Apr/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com