Question Number 217122 by efronzo1 last updated on 01/Mar/25 | ||
![]() | ||
$$\:\:\:\:\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$ | ||
Answered by Frix last updated on 01/Mar/25 | ||
![]() | ||
$$\int\frac{\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}{\mathrm{cos}\:{x}}{dx}=\int\frac{\sqrt{−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x}}}{\mathrm{cos}\:{x}}{dx}\:\overset{\left[{t}=\sqrt{\mathrm{2}}\mathrm{sin}\:{x}\right]} {=} \\ $$$$=\sqrt{\mathrm{2}}\int\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}−{t}^{\mathrm{2}} }{dt}\:\overset{\left[{u}=\frac{{t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\right]} {=}\:\sqrt{\mathrm{2}}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({u}^{\mathrm{2}} +\mathrm{2}\right)}= \\ $$$$=\sqrt{\mathrm{2}}\int\left(\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{2}}\right){du}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:{u}\:−\mathrm{tan}^{−\mathrm{1}} \:\frac{{u}}{\:\sqrt{\mathrm{2}}}\:= \\ $$$$... \\ $$$$=\sqrt{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \:\left(\sqrt{\mathrm{2}}\mathrm{sin}\:{x}\right)\:−\mathrm{sin}^{−\mathrm{1}} \:\left(\mathrm{tan}\:{x}\right)\:+{C} \\ $$ | ||