Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201728 by hardmath last updated on 11/Dec/23

cos^2  4x ∙ sin^2  4x = 0,25 for equation  [0;90] how many roots are there in the  piece?

$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{4x}\:\centerdot\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{4x}\:=\:\mathrm{0},\mathrm{25}\:\mathrm{for}\:\mathrm{equation} \\ $$$$\left[\mathrm{0};\mathrm{90}\right]\:\mathrm{how}\:\mathrm{many}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{piece}? \\ $$

Answered by esmaeil last updated on 11/Dec/23

(2cos4x.sin4x)^2 =1→  sin^2 8x=1→((1−cos16x)/2)=1→  cos16x=−1=cosπ→  x=((2kπ)/(16))±(π/(16))→x=((π/(16)),((3π)/(16)),((5π)/(16)),((7π)/(16)))

$$\left(\mathrm{2}{cos}\mathrm{4}{x}.{sin}\mathrm{4}{x}\right)^{\mathrm{2}} =\mathrm{1}\rightarrow \\ $$$${sin}^{\mathrm{2}} \mathrm{8}{x}=\mathrm{1}\rightarrow\frac{\mathrm{1}−{cos}\mathrm{16}{x}}{\mathrm{2}}=\mathrm{1}\rightarrow \\ $$$${cos}\mathrm{16}{x}=−\mathrm{1}={cos}\pi\rightarrow \\ $$$${x}=\frac{\mathrm{2}{k}\pi}{\mathrm{16}}\pm\frac{\pi}{\mathrm{16}}\rightarrow{x}=\left(\frac{\pi}{\mathrm{16}},\frac{\mathrm{3}\pi}{\mathrm{16}},\frac{\mathrm{5}\pi}{\mathrm{16}},\frac{\mathrm{7}\pi}{\mathrm{16}}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by hardmath last updated on 11/Dec/23

thank you dear professor,  i.e. the piece [0;90] has four roots ?  answer: 4 ?

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor}, \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{the}\:\mathrm{piece}\:\left[\mathrm{0};\mathrm{90}\right]\:\mathrm{has}\:\mathrm{four}\:\mathrm{roots}\:? \\ $$$$\mathrm{answer}:\:\mathrm{4}\:? \\ $$

Commented by esmaeil last updated on 11/Dec/23

yes

$${yes} \\ $$

Commented by esmaeil last updated on 11/Dec/23

((2k−1)/(16))≤(1/2)⇒k≤4

$$\frac{\mathrm{2}{k}−\mathrm{1}}{\mathrm{16}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{k}\leqslant\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com