Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199862 by universe last updated on 10/Nov/23

consider the taylor expansion of the function (1/(1+x^3 ))  centered at x = 1/2 then the radius of convergence  of the power series repersentation of the function is

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com