Question Number 107835 by PNL last updated on 12/Aug/20 | ||
![]() | ||
$${compute}\:{In}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \sqrt{\mathrm{1}−{x}}\:{dx} \\ $$ | ||
Answered by hgrocks last updated on 12/Aug/20 | ||
![]() | ||
$$\mathrm{I}_{\mathrm{n}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{x}^{\mathrm{n}} \left(\mathrm{1}−\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{dx} \\ $$$$\:\:\:\:\:=\:\beta\left(\mathrm{n}+\mathrm{1},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$ | ||
Answered by mathmax by abdo last updated on 12/Aug/20 | ||
![]() | ||
$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}\:=\mathrm{sin}^{\mathrm{2}} \mathrm{t}\:\Rightarrow \\ $$$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2n}} \mathrm{t}\:\mathrm{cost}\:\left(\mathrm{2sint}\right)\mathrm{cost}\:\mathrm{dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\mathrm{cos}^{\mathrm{2}} \mathrm{t}\:\:\mathrm{sin}^{\mathrm{2n}+\mathrm{1}} \mathrm{t}\:\mathrm{dt}\:\:\mathrm{we}\:\mathrm{know} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{2p}−\mathrm{1}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2q}−\mathrm{1}} \mathrm{x}\:\mathrm{dx}\:=\mathrm{B}\left(\mathrm{p},\mathrm{q}\right)\:=\frac{\Gamma\left(\mathrm{p}\right).\Gamma\left(\mathrm{q}\right)}{\Gamma\left(\mathrm{p}+\mathrm{q}\right)} \\ $$$$\mathrm{2p}−\mathrm{1}\:=\mathrm{2}\:\Rightarrow\mathrm{p}=\mathrm{3}\:\mathrm{and}\:\mathrm{2q}−\mathrm{1}\:=\mathrm{2n}+\mathrm{1}\:\Rightarrow\mathrm{2q}=\mathrm{2n}+\mathrm{2}\:\Rightarrow\mathrm{q}=\mathrm{n}+\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{2}} \mathrm{t}\:\mathrm{sin}^{\mathrm{2n}+\mathrm{1}} \mathrm{t}\:\mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\mathrm{1}} \:\mathrm{sin}^{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)−\mathrm{1}} \mathrm{t}\:\mathrm{dt} \\ $$$$=\mathrm{B}\left(\frac{\mathrm{3}}{\mathrm{2}},\mathrm{n}+\mathrm{1}\right)\:=\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\mathrm{n}+\mathrm{1}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{n}+\mathrm{1}\right)}\:=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)\mathrm{n}!}{\left(\mathrm{n}+\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\mathrm{n}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{n}!}{\left(\mathrm{n}+\frac{\mathrm{3}}{\mathrm{2}}\right)\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$ | ||
Commented by PNL last updated on 13/Aug/20 | ||
![]() | ||
$$ \\ $$ | ||
Commented by PNL last updated on 13/Aug/20 | ||
![]() | ||
$${it}'{s}\:{a}\:{little}\:{difficult}\:{to}\:{understand} \\ $$ | ||
Commented by mathmax by abdo last updated on 13/Aug/20 | ||
![]() | ||
$$\mathrm{i}\:\mathrm{have}\:\mathrm{used}\:\Gamma\left(\mathrm{x}+\mathrm{1}\right)\:=\mathrm{x}\Gamma\left(\mathrm{x}\right) \\ $$ | ||
Commented by PNL last updated on 13/Aug/20 | ||
![]() | ||
$${what}\:{is}\:{the}\:{expression}\:{of}\:\Gamma? \\ $$ | ||
Commented by Aziztisffola last updated on 13/Aug/20 | ||
![]() | ||
$$\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\:\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}=\left(\mathrm{x}−\mathrm{1}\right)! \\ $$ | ||
Commented by PNL last updated on 13/Aug/20 | ||
![]() | ||
$${ok}\:{tanks}.\:{God}\:{bless}\:{you} \\ $$ | ||