Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 115031 by bobhans last updated on 23/Sep/20

 circle of centre P  touches externally both  the circle x^2 +y^2 −4x+3=0 and   x^2 +y^2 −6y+5=0 . The locus of P is  (3/4)x^2 −3xy+2y^2  = λ(y−x) where λ is __

$$\:{circle}\:{of}\:{centre}\:{P}\:\:{touches}\:{externally}\:{both} \\ $$$${the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}=\mathrm{0}\:{and}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{y}+\mathrm{5}=\mathrm{0}\:.\:{The}\:{locus}\:{of}\:{P}\:{is} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} \:=\:\lambda\left({y}−{x}\right)\:{where}\:\lambda\:{is}\:\_\_ \\ $$

Answered by mr W last updated on 23/Sep/20

x^2 +y^2 −4x+3=0  (x−2)^2 +y^2 =1^2  ⇒center (2,0) radius 1  x^2 +y^2 −6y+5=0  x^2 +(y−3)^2 =2^2  ⇒center (0,3), radius 2    P(u,v) with radius R  (u−2)^2 +v^2 =(R+1)^2    ...(i)  u^2 +(v−3)^2 =(R+2)^2    ...(ii)  (ii)−(i):  4(u−1)−3(2v−3)=2R+3  ⇒R=2u−3v+1  (u−2)^2 +v^2 =(2u−3v+2)^2    u^2 −4u+4+v^2 =4u^2 +9v^2 +4−12uv+8u−12v  3u^2 +8v^2 −12uv+12u−12v=0  (3/4)u^2 −3uv+2v^2 =3(v−u)  or  (3/4)x^2 −3xy+2y^2 =3(y−x)  ⇒λ=3

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} \:\Rightarrow{center}\:\left(\mathrm{2},\mathrm{0}\right)\:{radius}\:\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{y}+\mathrm{5}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\left({y}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} \:\Rightarrow{center}\:\left(\mathrm{0},\mathrm{3}\right),\:{radius}\:\mathrm{2} \\ $$$$ \\ $$$${P}\left({u},{v}\right)\:{with}\:{radius}\:{R} \\ $$$$\left({u}−\mathrm{2}\right)^{\mathrm{2}} +{v}^{\mathrm{2}} =\left({R}+\mathrm{1}\right)^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$${u}^{\mathrm{2}} +\left({v}−\mathrm{3}\right)^{\mathrm{2}} =\left({R}+\mathrm{2}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\mathrm{4}\left({u}−\mathrm{1}\right)−\mathrm{3}\left(\mathrm{2}{v}−\mathrm{3}\right)=\mathrm{2}{R}+\mathrm{3} \\ $$$$\Rightarrow{R}=\mathrm{2}{u}−\mathrm{3}{v}+\mathrm{1} \\ $$$$\left({u}−\mathrm{2}\right)^{\mathrm{2}} +{v}^{\mathrm{2}} =\left(\mathrm{2}{u}−\mathrm{3}{v}+\mathrm{2}\right)^{\mathrm{2}} \: \\ $$$${u}^{\mathrm{2}} −\mathrm{4}{u}+\mathrm{4}+{v}^{\mathrm{2}} =\mathrm{4}{u}^{\mathrm{2}} +\mathrm{9}{v}^{\mathrm{2}} +\mathrm{4}−\mathrm{12}{uv}+\mathrm{8}{u}−\mathrm{12}{v} \\ $$$$\mathrm{3}{u}^{\mathrm{2}} +\mathrm{8}{v}^{\mathrm{2}} −\mathrm{12}{uv}+\mathrm{12}{u}−\mathrm{12}{v}=\mathrm{0} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}{u}^{\mathrm{2}} −\mathrm{3}{uv}+\mathrm{2}{v}^{\mathrm{2}} =\mathrm{3}\left({v}−{u}\right) \\ $$$${or} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} =\mathrm{3}\left({y}−{x}\right) \\ $$$$\Rightarrow\lambda=\mathrm{3} \\ $$

Commented by bobhans last updated on 23/Sep/20

hahaha...gave kudos sir

$${hahaha}...{gave}\:{kudos}\:{sir} \\ $$

Commented by bemath last updated on 23/Sep/20

Commented by bemath last updated on 23/Sep/20

why sir locus of P not a circle?

$${why}\:{sir}\:{locus}\:{of}\:{P}\:{not}\:{a}\:{circle}? \\ $$

Commented by mr W last updated on 23/Sep/20

why should it be a circle?  we can see the distance from P to  the given circles can be infinite.

$${why}\:{should}\:{it}\:{be}\:{a}\:{circle}? \\ $$$${we}\:{can}\:{see}\:{the}\:{distance}\:{from}\:{P}\:{to} \\ $$$${the}\:{given}\:{circles}\:{can}\:{be}\:{infinite}. \\ $$

Commented by mr W last updated on 23/Sep/20

in fact it is clear that the locus is  a hyperbola. just have a look at the  definition of hyperbola.

$${in}\:{fact}\:{it}\:{is}\:{clear}\:{that}\:{the}\:{locus}\:{is} \\ $$$${a}\:{hyperbola}.\:{just}\:{have}\:{a}\:{look}\:{at}\:{the} \\ $$$${definition}\:{of}\:{hyperbola}. \\ $$

Commented by bemath last updated on 23/Sep/20

the question say : ”a circle of P centre”

$${the}\:{question}\:{say}\::\:''{a}\:{circle}\:{of}\:{P}\:{centre}'' \\ $$

Commented by mr W last updated on 23/Sep/20

P is the center of a circle which  tangents two given circles. but the  locus of P is not a circle! say the two  given circles are  circle 1 with center A and radius r_A   circle 2 with center B and radius r_B   the circle with center P has radius R.  we have  PA=r_A +R  PB=r_B +R  PA−PB=r_A −r_B =constant  the locus of a point P, whose   difference distance to two given  points A and B is constant, is a  hyperbola.

$${P}\:{is}\:{the}\:{center}\:{of}\:{a}\:{circle}\:{which} \\ $$$${tangents}\:{two}\:{given}\:{circles}.\:{but}\:{the} \\ $$$${locus}\:{of}\:{P}\:{is}\:{not}\:{a}\:{circle}!\:{say}\:{the}\:{two} \\ $$$${given}\:{circles}\:{are} \\ $$$${circle}\:\mathrm{1}\:{with}\:{center}\:{A}\:{and}\:{radius}\:{r}_{{A}} \\ $$$${circle}\:\mathrm{2}\:{with}\:{center}\:{B}\:{and}\:{radius}\:{r}_{{B}} \\ $$$${the}\:{circle}\:{with}\:{center}\:{P}\:{has}\:{radius}\:{R}. \\ $$$${we}\:{have} \\ $$$${PA}={r}_{{A}} +{R} \\ $$$${PB}={r}_{{B}} +{R} \\ $$$${PA}−{PB}={r}_{{A}} −{r}_{{B}} ={constant} \\ $$$${the}\:{locus}\:{of}\:{a}\:{point}\:{P},\:{whose}\: \\ $$$${difference}\:{distance}\:{to}\:{two}\:{given} \\ $$$${points}\:{A}\:{and}\:{B}\:{is}\:{constant},\:{is}\:{a} \\ $$$${hyperbola}. \\ $$

Commented by mr W last updated on 23/Sep/20

Commented by bemath last updated on 23/Sep/20

ooo i understood sir. gave kudos  sir

$${ooo}\:{i}\:{understood}\:{sir}.\:{gave}\:{kudos} \\ $$$${sir} \\ $$

Commented by otchereabdullai@gmail.com last updated on 24/Sep/20

more  blessing prof

$$\mathrm{more}\:\:\mathrm{blessing}\:\mathrm{prof} \\ $$

Commented by mr W last updated on 24/Sep/20

thanks!

$${thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com