Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206890 by mathzup last updated on 29/Apr/24

can some one find the exact value of  Σ_(n=0) ^∞  (1/((n!)^2 ))

$${can}\:{some}\:{one}\:{find}\:{the}\:{exact}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} } \\ $$

Commented by Frix last updated on 30/Apr/24

This is a Modified Bressel Function of the  First Kind.  I_n  (z) =(1/π)∫_0 ^π e^(zcos θ) cos nθ dθ  With n=0 this is equal to  I_0  (z) =Σ_(k=0) ^∞ ((((z^2 /4))^k )/((k!)^2 ))  ⇒ Σ_(k=0) ^∞  (1/((k!)^2 )) =I_0  (2) ≈2.27958530234  I found this in a script, without proof, so  you′ll have to do some research...

$$\mathrm{This}\:\mathrm{is}\:\mathrm{a}\:\mathrm{Modified}\:\mathrm{Bressel}\:\mathrm{Function}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{First}\:\mathrm{Kind}. \\ $$$${I}_{{n}} \:\left({z}\right)\:=\frac{\mathrm{1}}{\pi}\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{e}^{{z}\mathrm{cos}\:\theta} \mathrm{cos}\:{n}\theta\:{d}\theta \\ $$$$\mathrm{With}\:{n}=\mathrm{0}\:\mathrm{this}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$${I}_{\mathrm{0}} \:\left({z}\right)\:=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{{z}^{\mathrm{2}} }{\mathrm{4}}\right)^{{k}} }{\left({k}!\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left({k}!\right)^{\mathrm{2}} }\:={I}_{\mathrm{0}} \:\left(\mathrm{2}\right)\:\approx\mathrm{2}.\mathrm{27958530234} \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}\:\mathrm{in}\:\mathrm{a}\:\mathrm{script},\:\mathrm{without}\:\mathrm{proof},\:\mathrm{so} \\ $$$$\mathrm{you}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{do}\:\mathrm{some}\:\mathrm{research}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com