Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116796 by mnjuly1970 last updated on 08/Oct/20

        ...      calculus  ...         prove  that ::        ∫_0 ^( 1) (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=^(???) log( (((p+q+r+1)r)/((p+r)(q+r))) )            m.n.1970

$$\:\:\:\:\:\:\:\:...\:\:\:\:\:\:{calculus}\:\:... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}\overset{???} {=}{log}\left(\:\frac{\left({p}+{q}+{r}+\mathrm{1}\right){r}}{\left({p}+{r}\right)\left({q}+{r}\right)}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$

Answered by mindispower last updated on 08/Oct/20

let f(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x)))dx  f′(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x))).log(x)dx  =∫_0 ^1 (x^(r+a−1) +x^(p+q+r−1+a) −x^(p+r−1+a) −x^(q+r−1+a) )dx    =(1/(r+a))+(1/(r+q+a+1))−(1/(p+r+a))−(1/(q+r+a))  we want f(0)  f(a)=∫((1/(r+a))+(1/(r+q+a+1+p))−(1/(p+r+a))−(1/(q+r+a)))da  =ln(((r+a)(r+q+p+a+1))/((p+r+a)(q+r+a)))+c  lim_(a→∞) f(a)=0⇒c=0  f(0)=ln(((r(p+q+r+1))/((p+r)(q+r))))  ∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=ln(((r(p+q+r+1))/((p+r)(q+r))))

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}+{a}} }{{log}\left({x}\right)}{dx} \\ $$$${f}'\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}+{a}} }{{log}\left({x}\right)}.{log}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{r}+{a}−\mathrm{1}} +{x}^{{p}+{q}+{r}−\mathrm{1}+{a}} −{x}^{{p}+{r}−\mathrm{1}+{a}} −{x}^{{q}+{r}−\mathrm{1}+{a}} \right){dx}\:\: \\ $$$$=\frac{\mathrm{1}}{{r}+{a}}+\frac{\mathrm{1}}{{r}+{q}+{a}+\mathrm{1}}−\frac{\mathrm{1}}{{p}+{r}+{a}}−\frac{\mathrm{1}}{{q}+{r}+{a}} \\ $$$${we}\:{want}\:{f}\left(\mathrm{0}\right) \\ $$$${f}\left({a}\right)=\int\left(\frac{\mathrm{1}}{{r}+{a}}+\frac{\mathrm{1}}{{r}+{q}+{a}+\mathrm{1}+{p}}−\frac{\mathrm{1}}{{p}+{r}+{a}}−\frac{\mathrm{1}}{{q}+{r}+{a}}\right){da} \\ $$$$={ln}\frac{\left({r}+{a}\right)\left({r}+{q}+{p}+{a}+\mathrm{1}\right)}{\left({p}+{r}+{a}\right)\left({q}+{r}+{a}\right)}+{c} \\ $$$$\underset{{a}\rightarrow\infty} {\mathrm{lim}}{f}\left({a}\right)=\mathrm{0}\Rightarrow{c}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)={ln}\left(\frac{{r}\left({p}+{q}+{r}+\mathrm{1}\right)}{\left({p}+{r}\right)\left({q}+{r}\right)}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}={ln}\left(\frac{{r}\left({p}+{q}+{r}+\mathrm{1}\right)}{\left({p}+{r}\right)\left({q}+{r}\right)}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 08/Oct/20

tayyeballah  bravo  thank you..

$${tayyeballah}\:\:{bravo}\:\:{thank}\:{you}.. \\ $$

Commented by mindispower last updated on 08/Oct/20

withe Pleasur

$${withe}\:{Pleasur}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com