Question Number 138114 by mnjuly1970 last updated on 10/Apr/21 | ||
$$\:\:\:\:\:\:\:\:\:\:\:\:......\:{calculus}.....\left({III}\right)...... \\ $$$$\:\:\:\:\:\:\:\:\:{evaluate}::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:{x}} \frac{{cos}\left({y}\right)}{\:\sqrt{\left(\frac{\pi}{\mathrm{2}}−{x}\right)\left(\frac{\pi}{\mathrm{2}}−{y}\right)}}{dydx} \\ $$$$ \\ $$ | ||
Commented by Kamel last updated on 10/Apr/21 | ||
Commented by mnjuly1970 last updated on 10/Apr/21 | ||
$${thanks}\:{alot}\:{mr}..{kamel} \\ $$ | ||
Answered by mnjuly1970 last updated on 10/Apr/21 | ||
$$\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{{y}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({y}\right)}{\:\sqrt{\left(\frac{\pi}{\mathrm{2}}−{x}\right)\left(\frac{\pi}{\mathrm{2}}−{y}\right)}}{dxdy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({y}\right)}{\:\sqrt{\frac{\pi}{\mathrm{2}}−{y}}}\:\left[−\sqrt{\frac{\pi}{\mathrm{2}}−{x}}\:\right]_{{y}} ^{\frac{\pi}{\mathrm{2}}} {dy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({y}\right){dy}=\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{2}}\right)=\mathrm{2}...\checkmark \\ $$ | ||