Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 140671 by mnjuly1970 last updated on 11/May/21

              ...... calculus .... (II).....     find convergence of ::          𝛗:= Σ_(n=2) ^∞  (1/(n(ln^3 (n)+ln(n))))

$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:......\:{calculus}\:....\:\left({II}\right)..... \\ $$$$\:\:\:{find}\:{convergence}\:{of}\::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left({ln}^{\mathrm{3}} \left({n}\right)+{ln}\left({n}\right)\right)}\: \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 11/May/21

ϕ(x)=(1/(x(log^3 x +logx)))  (x>2) ⇒ϕ^′ (x)=−((log^3 x +logx +x(((3log^2 x)/x)+(1/x)))/(x^2 (log^3 x+logx)^2 ))  =−((log^3 x+logx+3log^2 x+1)/(x^2 (log^3 x+logx)^2 ))<0 ⇒ϕ is decreazing on[2,+∞[ ⇒  so Σ(...) and ∫_e ^∞    (dt/(t(log^3 t +logt))) are the same nature of convergence  Φ=∫_e ^∞  (dt/(t(log^3 t +logt))) =_(logt=x)   ∫_1 ^∞  ((e^x dx)/(e^x (x^3  +x)))  =∫_1 ^∞  (dx/(x^3  +x)) =∫_1 ^∞  (dx/(x(x^2  +1))) =∫_1 ^∞ ((1/x)−(x/(1+x^2 )))dx  =[ln∣(x/( (√(1+x^2 ))))∣]_1 ^∞ <+∞ ⇒Φ converges ⇒Σ u_n  converge...

$$\varphi\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}\left(\mathrm{log}^{\mathrm{3}} \mathrm{x}\:+\mathrm{logx}\right)}\:\:\left(\mathrm{x}>\mathrm{2}\right)\:\Rightarrow\varphi^{'} \left(\mathrm{x}\right)=−\frac{\mathrm{log}^{\mathrm{3}} \mathrm{x}\:+\mathrm{logx}\:+\mathrm{x}\left(\frac{\mathrm{3log}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{log}^{\mathrm{3}} \mathrm{x}+\mathrm{logx}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{log}^{\mathrm{3}} \mathrm{x}+\mathrm{logx}+\mathrm{3log}^{\mathrm{2}} \mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{log}^{\mathrm{3}} \mathrm{x}+\mathrm{logx}\right)^{\mathrm{2}} }<\mathrm{0}\:\Rightarrow\varphi\:\mathrm{is}\:\mathrm{decreazing}\:\mathrm{on}\left[\mathrm{2},+\infty\left[\:\Rightarrow\right.\right. \\ $$$$\mathrm{so}\:\Sigma\left(...\right)\:\mathrm{and}\:\int_{\mathrm{e}} ^{\infty} \:\:\:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{log}^{\mathrm{3}} \mathrm{t}\:+\mathrm{logt}\right)}\:\mathrm{are}\:\mathrm{the}\:\mathrm{same}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\Phi=\int_{\mathrm{e}} ^{\infty} \:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{log}^{\mathrm{3}} \mathrm{t}\:+\mathrm{logt}\right)}\:=_{\mathrm{logt}=\mathrm{x}} \:\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{x}} \mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \left(\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}\right)} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \:+\mathrm{x}}\:=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:=\int_{\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$$$=\left[\mathrm{ln}\mid\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\mid\right]_{\mathrm{1}} ^{\infty} <+\infty\:\Rightarrow\Phi\:\mathrm{converges}\:\Rightarrow\Sigma\:\mathrm{u}_{\mathrm{n}} \:\mathrm{converge}... \\ $$

Commented by mnjuly1970 last updated on 12/May/21

 great sir max ...

$$\:{great}\:{sir}\:{max}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com