Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 188449 by mnjuly1970 last updated on 01/Mar/23

           calculate            lim_(  x→ (π/4))   (  tan (x ))^( tan(2x ))   = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{calculate} \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\mathrm{lim}_{\:\:{x}\rightarrow\:\frac{\pi}{\mathrm{4}}} \:\:\left(\:\:\mathrm{tan}\:\left({x}\:\right)\right)^{\:\mathrm{tan}\left(\mathrm{2}{x}\:\right)} \:\:=\:?\:\:\: \\ $$$$\:\: \\ $$

Answered by cortano12 last updated on 01/Mar/23

 L=lim_(x→(π/4))  [tan x ]^(tan 2x)    L = e^(lim_(x→(π/4)) (((tan x−1)/(tan 2x))))    L = e^(lim_(x→(π/4))  ((sin x−cos x)/(cos x)). ((sin 2x)/((cos x−sin x)(cos x+sin x))))    L = e^(lim_(x→(π/4))  [((−sin 2x)/(cos x(cos x+sin x))) ])    L = e^(−((1/((1/( (√2)))((√2) )))))  = (1/e)

$$\:\mathrm{L}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\left[\mathrm{tan}\:\mathrm{x}\:\right]^{\mathrm{tan}\:\mathrm{2x}} \\ $$$$\:\mathrm{L}\:=\:\mathrm{e}^{\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\left(\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{1}}{\mathrm{tan}\:\mathrm{2x}}\right)} \\ $$$$\:\mathrm{L}\:=\:\mathrm{e}^{\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}}.\:\frac{\mathrm{sin}\:\mathrm{2x}}{\left(\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)}} \\ $$$$\:\mathrm{L}\:=\:\mathrm{e}^{\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\left[\frac{−\mathrm{sin}\:\mathrm{2x}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)}\:\right]} \\ $$$$\:\mathrm{L}\:=\:\mathrm{e}^{−\left(\frac{\mathrm{1}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}}\:\right)}\right)} \:=\:\frac{\mathrm{1}}{\mathrm{e}} \\ $$

Commented by mnjuly1970 last updated on 03/Mar/23

thx alot sir cortano

$${thx}\:{alot}\:{sir}\:{cortano} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com