Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 143258 by Mathspace last updated on 12/Jun/21 | ||
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \int_{{x}} ^{{x}^{\mathrm{2}} } \:\frac{{sh}\left({xt}\right)}{{x}+{t}}{dt} \\ $$ | ||
Answered by Mathspace last updated on 13/Jun/21 | ||
$$\int_{{x}} ^{{x}^{\mathrm{2}} } \:\frac{{sh}\left({xt}\right)}{{x}+{t}}{dt}\:=_{{xt}={u}} \:\:\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\frac{{sinu}}{{x}+\frac{{u}}{{x}}}\frac{{du}}{{x}} \\ $$$$=\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\frac{{sinu}}{{x}^{\mathrm{2}\:} +{u}}{du}\:={Y}\left({x}\right) \\ $$$$\left.\exists{c}\in\right]{x}^{\mathrm{2}} ,{x}^{\mathrm{3}} \left[\:\:/{Y}\left({x}\right)={sinc}\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\frac{{du}}{{u}+{x}^{\mathrm{2}} }\right. \\ $$$$={sinc}\left[{log}\mid{u}+{x}^{\mathrm{2}} \mid\right]_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \\ $$$$={sinc}\left\{{log}\mid\frac{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\mid\right\} \\ $$$${sinclog}\mid\frac{\mathrm{1}+{x}}{\mathrm{2}}\mid\:\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {Y}\left({x}\right)={sin}\left(\mathrm{1}\right){log}\left(\mathrm{1}\right)=\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \int_{{x}} ^{{x}^{\mathrm{2}} } \:\frac{{sh}\left({xt}\right)}{{x}+{t}}{dt}=\mathrm{0} \\ $$ | ||