Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54374 by maxmathsup by imad last updated on 02/Feb/19

calculate h(a) =∫_(−∞) ^(+∞)   ((cos(at))/(ch((t/2))))dt .

$${calculate}\:{h}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({at}\right)}{{ch}\left(\frac{{t}}{\mathrm{2}}\right)}{dt}\:. \\ $$

Commented by Abdo msup. last updated on 08/Feb/19

h(a)=_((t/2)=x)    2 ∫_(−∞) ^(+∞)    ((cos(2ax))/(ch(x)))dx  =4 ∫_0 ^∞    ((cos(2ax))/((e^x  +e^(−x) )/2))dx =8 ∫_0 ^∞   ((e^(−x) cos(2ax))/(1+e^(−2x) ))dx  =8 ∫_0 ^∞   e^(−x) cos(2ax)(Σ_(n=0) ^∞ (−1)^n  e^(−2nx) )dx  =8 Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞   e^(−(2n+1)x)  cos(2ax)dx  let A_n =∫_0 ^∞  e^(−(2n+1)x) cos(2ax)dx ⇒  A_n =Re( ∫_0 ^∞   e^(−(2n+1)x) e^(2iax) dx) but  ∫_0 ^∞   e^((−(2n+1)+2ia)x) dx=[(1/(−(2n+1)+2ia)) e^((−(2n+1)+2ia)x) ]_0 ^(+∞)   = (1/(−(2n+1)+2ia)) =−(1/((2n+1)−2ia))  =−((2n+1 +2ia)/((2n+1)^2  +4a^2 )) ⇒ A_n =−((2n+1)/((2n+1)^2  +4a^2 )) ⇒  h(a)=8 Σ_(n=0) ^∞ (−1)^(n+1)  ((2n+1)/((2n+1)^2  +4a^2 ))  and this serie can be calculated by  fourier series  ...be continued...

$${h}\left({a}\right)=_{\frac{{t}}{\mathrm{2}}={x}} \:\:\:\mathrm{2}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{ax}\right)}{{ch}\left({x}\right)}{dx} \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{ax}\right)}{\frac{{e}^{{x}} \:+{e}^{−{x}} }{\mathrm{2}}}{dx}\:=\mathrm{8}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} {cos}\left(\mathrm{2}{ax}\right)}{\mathrm{1}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$$$=\mathrm{8}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {cos}\left(\mathrm{2}{ax}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{e}^{−\mathrm{2}{nx}} \right){dx} \\ $$$$=\mathrm{8}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} \:{cos}\left(\mathrm{2}{ax}\right){dx} \\ $$$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {cos}\left(\mathrm{2}{ax}\right){dx}\:\Rightarrow \\ $$$${A}_{{n}} ={Re}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {e}^{\mathrm{2}{iax}} {dx}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{2}{ia}\right){x}} {dx}=\left[\frac{\mathrm{1}}{−\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{2}{ia}}\:{e}^{\left(−\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{2}{ia}\right){x}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{−\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{2}{ia}}\:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{2}{ia}} \\ $$$$=−\frac{\mathrm{2}{n}+\mathrm{1}\:+\mathrm{2}{ia}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{4}{a}^{\mathrm{2}} }\:\Rightarrow\:{A}_{{n}} =−\frac{\mathrm{2}{n}+\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{4}{a}^{\mathrm{2}} }\:\Rightarrow \\ $$$${h}\left({a}\right)=\mathrm{8}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\frac{\mathrm{2}{n}+\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${and}\:{this}\:{serie}\:{can}\:{be}\:{calculated}\:{by}\:\:{fourier}\:{series} \\ $$$$...{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com